Question 11.5: A steel wide-flange column of a HE 320A shape (Fig. 11-29a) ......

A steel wide-flange column of a HE 320A shape (Fig. 11-29a) is pin-supported at the ends and has a length of 7.5 m. The column supports a centrally applied load P_1 = 1800 kN and an eccentrically applied load P_2 = 200 kN (Fig. 11-29b). Bending takes place about axis 1–1 of the cross section, and the eccentric load acts on axis 2–2 at a distance of 400 mm from the centroid C.
(a) Using the secant formula, and assuming E = 210 GPa, calculate the maximum compressive stress in the column.
(b) If the yield stress for the steel is \sigma_Y = 300 MPa, what is the factor of safety with respect to yielding?

11.29
11.29.2
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach.
Part (a): Maximum compressive stress.
1. Conceptualize: The two loads P_1 ~ and ~ P_2 acting as shown in Fig. 11-29b are statically equivalent to a single load P = 2000 kN acting with an eccentricity e = 40 mm (Fig. 11-29c). Since the column is now loaded by a single force P having an eccentricity e, use the secant formula to find the maximum stress.
The required properties of the HE 320A wide-flange shape are obtained from Table F-1 in Appendix F:
A = 124.4 ~ cm^2 \quad r = 13.58 ~ cm \quad c = \frac{310~mm}{2} = 155~mm
2. Categorize: The required terms in the secant formula of Eq. (11-67) are calculated as
\quad\quad\quad\quad {\frac{P}{A}}={\frac{2000\,\mathrm{kN}}{124.4\,\mathrm{cm^2}}}=160.77\,\mathrm{MP}{\mathrm{a}} \\ \quad\quad\quad\quad {\frac{e c}{r^{2}}}={\frac{(40\operatorname*{mm})(155\operatorname*{mm})}{(13\cdot58\operatorname*{cm})^{2}}}=0.336 \\ \quad\quad\quad\quad {\frac{L}{r}}={\frac{(7.5m)}{13.58\,\mathrm{cm}}}= 55.23 \\ \quad\quad\quad\quad {\frac{P}{E A}}={\frac{2000\,\mathrm{kN}}{(210{\mathrm{GPa}})(124.4\,\mathrm{cm}^{2})}}=765.6\times10^{-6}
3. Analyze: Substitute these values into the secant formula to get
\quad\quad\quad\quad\sigma_{\mathrm{max}}\ \ ={\frac{P}{A\!}}\!\left[1+{\frac{e c}{r^{2}}}sec {\Bigg\lgroup}{\frac{L}{2r}}{\sqrt{\frac{P}{E A}}}{\Bigg\rgroup}\right]  \\  \quad\quad\quad\quad = (160.77 ~MPa)(1 + 0.466) = 235.6 ~MPa
4. Finalize: This compressive stress occurs at mid-height of the column on the concave side (the right-hand side in Fig. 11-29b).
Part (b): Factor of safety with respect to yielding.
1. Conceptualize: To find the factor of safety, determine the value of the load P, acting at the eccentricity e, that will produce a maximum stress equal to the yield stress \sigma_Y = 300 ~MPa. Since this value of the load is just sufficient to produce initial yielding of the material, denote it as P_Y.
2. Categorize: Note that force P_Y cannot be determined by multiplying the load P (equal to 2000 kN) by the ratio \sigma_Y /\sigma_{max}. The reason is that there is a nonlinear relationship between load and stress. Instead, substitute \sigma_{max} = \sigma_Y = 300~ MPa in the secant formula and then solve for the corresponding load P, which becomes P_Y. In other words, find the value of P_Y that satisfies
\quad\quad\quad\quad \sigma_{\mathrm{Y}}={\frac{P_{\mathrm{Y}}}{A}}{\Bigg[}{1+{\frac{e c}{r^{2}}}}{\mathsf{s e c}}{{\Bigg\lgroup}}{\frac{L}{2r}}{\sqrt{\frac{P_{\mathrm{Y}}}{E A}}}{\Bigg\rgroup}{\Bigg]}\quad\quad(11-70)
3. Analyze: Substitute numerical values to obtain
\quad 300\;M P{a}=\frac{P_{Y}}{124.4\;\mathrm{cm}^{2}}\bigg[1+0.336\,\mathrm{sec}{\Bigg\lgroup}\frac{55.23}{2}\sqrt{\frac{P_Y}{{(210~\mathrm{GP}a)(124.4~\mathrm{cm}^{2})}}}{\Bigg\rgroup}\bigg]
so
\quad\quad\quad\quad 3732\,\mathrm{KN}={P}_{Y}[1+0.336\,s e c\,(5.403\times10^{-4}\sqrt{P_{Y}}\,)]
in which P_Y has units of kN. Solving this equation numerically gives
\quad\quad\quad\quad P_Y = 2473 ~kN
This load will produce yielding of the material (in compression) at the cross section of maximum bending moment.
Since the actual load is P = 2000 kN, the factor of safety against yielding is
\quad\quad\quad\quad n = \frac{P_Y}{P} = \frac{2473 ~KN}{2000~ kN} = 1.236
4. Finalize: This example illustrates two of the many ways in which the secant formula may be used. Other types of analysis are illustrated in the problems at the end of the chapter.

Table F-1
Properties of European Wide-Flange Beams
Designation Mass per meter Area of section Depth of section Width of section Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_w t_f I_1 S_1 r_1 I_2 S_2 r_2
kg/m cm² mm mm mm mm cm⁴ cm³ cm cm⁴ cm³ cm
HE 1000 B 314 400 1000 300 19 36 644700 12890 40.15 16280 1085 6.38
HE 900 B 291 371.3 900 300 18.5 35 494100 10980 36.48 15820 1054 6.53
HE 700 B 241 306.4 700 300 17 32 256900 7340 28.96 14440 962.7 6.87
HE 650 B 225 286.3 650 300 16 31 210600 6480 27.12 13980 932.3 6.99
HE 600 B 212 270 600 300 15.5 30 171000 5701 25.17 13530 902 7.08
HE 550 B 199 254.1 550 300 15 29 136700 4971 23.2 13080 871.8 7.17
HE 600 A 178 226.5 590 300 13 25 141200 4787 24.97 11270 751.4 7.05
HE 450 B 171 218 450 300 14 26 79890 3551 19.14 11720 781.4 7.33
HE 550 A 166 211.8 540 300 12.5 24 111900 4146 22.99 10820 721.3 7.15
HE 360 B 142 180.6 360 300 12.5 22.5 43190 2400 15.46 10140 676.1 7.49
HE 450 A 140 178 440 300 11.5 21 63720 2896 18.92 9465 631 7.29
HE 340 B 134 170.9 340 300 12 21.5 36660 2156 14.65 9690 646 7.53
HE 320 B 127 161.3 320 300 11.5 20.5 30820 1926 13.82 9239 615.9 7.57
HE 360 A 112 142.8 350 300 10 17.5 33090 1891 15.22 7887 525.8 7.43
HE 340 A 105 133.5 330 300 9.5 16.5 27690 1678 14.4 7436 495.7 7.46
HE 320 A 97.6 124.4 310 300 9 15.5 22930 1479 13.58 6985 465.7 7.49
HE 260 B 93 118.4 260 260 10 17.5 14920 1148 11.22 5135 395 6.58
HE 240 B 83.2 106 240 240 10 17 11260 938.3 10.31 3923 326.9 6.08
HE 280 A 76.4 97.26 270 280 8 13 13670 1013 11.86 4763 340.2 7
HE 220 B 71.5 91.04 220 220 9.5 16 8091 735.5 9.43 2843 258.5 5.59
HE 260 A 68.2 86.82 250 260 7.5 12.5 10450 836.4 10.97 3668 282.1 6.5
HE 240 A 60.3 76.84 230 240 7.5 12 7763 675.1 10.05 2769 230.7 6
HE 180 B 51.2 65.25 180 180 8.5 14 3831 425.7 7.66 1363 151.4 4.57
HE 160 B 42.6 54.25 160 160 8 13 2492 311.5 6.78 889.2 111.2 4.05
HE 140 B 33.7 42.96 140 140 7 12 1509 215.6 5.93 549.7 78.52 3.58
HE 120 B 26.7 34.01 120 120 6.5 11 864.4 144.1 5.04 317.5 52.92 3.06
HE 140 A 24.7 31.42 133 140 5.5 8.5 1033 155.4 5.73 389.3 55.62 3.52
HE 100 B 20.4 26.04 100 100 6 10 449.5 89.91 4.16 167.3 33.45 2.53
HE 100 A 16.7 21.24 96 100 5 8 349.2 72.76 4.06 133.8 26.76 2.51

Related Answered Questions