Question 4.6: The d-Dimensional Fourier Transform Derive the equation ∫d^d......

The d-Dimensional Fourier Transform

Derive the equation

\int \mathrm{d}^{d} x \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{\left(-x^{2}\right)^{ν}}=-\mathrm{i} \pi^{2} \frac{\Gamma(2-ν+\varepsilon)}{\Gamma(ν)}\left(\frac{-4 \pi^{2} \mu^{2}}{p^{2}}\right)^{\varepsilon}\left(\frac{-p^{2}}{4}\right)^{\nu-2} .      (1)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In three dimensions plane waves can be expanded into Bessel functions and Legendre polynomials according to

\mathrm{e}^{\mathrm{i} {p} \cdot {x}}=\mathrm{e}^{\mathrm{i}|{p}||{x}| \cos \theta}=\ldots      (2)

To prove (1) we need the generalization of this expansion to arbitrary dimensions. The exponential itself looks the same for any Euclidian dimension, namely

\mathrm{e}^{\mathrm{i} {p} \cdot {x}}=\mathrm{e}^{\mathrm{i}|{p}||{x}| \cos \theta} .        (3)

Therefore the dimensionality enters only in the orthogonality property. The functions of \theta that we call C_{i}(\theta) shall be orthogonal with the weight (\sin \theta)^{d-2}, because the d-dimensional volume element is proportional to (\sin \vartheta)^{d-2} (see Exercise 4.5, (2)):

\begin{aligned} & \int \mathrm{d}^{d} \Omega C_{i}(\cos \theta) C_{j}(\cos \theta) \\ & \sim \int\limits_{0}^{\pi} \mathrm{d} \theta(\sin \theta)^{d-2} C_{i}(\cos \theta) C_{j}(\cos \theta) \\ & \quad=\int\limits_{-1}^{1} \mathrm{~d} \cos \theta\left(\sin ^{2} \theta\right)^{(d-3) / 2} C_{i}(\cos \theta) C_{j}(\cos \theta) \\ & \quad=\int\limits_{-1}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{(d-3) / 2} C_{i}(x) C_{j}(x) . & (4) \end{aligned}

Orthogonal polynomials with the weight \left(1-x^{2}\right)^{d-1 / 2} are the “Gegenbauer polynomials” C_{n}^{(\alpha)}(x) .{ }^{9} The important properties for us are

\mathrm{e}^{\mathrm{i} p x \cos \theta}=\Gamma(ν)\left(\frac{p x}{2}\right)^{-ν} \sum\limits_{k=0}^{\infty}(\nu+k) i^{k} J_{ν+k}(p x) C_{k}^{(ν)}(\cos \theta)     (5)

with arbitrary \nu,

\begin{aligned} & \int\limits_{-1}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{\alpha-1 / 2} C_{n}^{(\alpha)}(x) C_{n^{\prime}}^{(\alpha)}(x) \\ & \quad=\delta_{n n^{\prime}} \frac{\pi 2^{1-2 \alpha} \Gamma(n+2 \alpha)}{n !(n+\alpha)[\Gamma(\alpha)]^{2}} \quad\left(\alpha>-\frac{1}{2}\right), & (6) \end{aligned}

and

C_{0}^{(\alpha)}(x)=1.      (7)

From (6) and (7) we find that

\begin{aligned} \int\limits_{-1}^{1} \mathrm{~d} x & \left(1-x^{2}\right)^{\alpha-1 / 2} C_{n}^{(\alpha)}(x)=\int\limits_{-1}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{\alpha-1 / 2} C_{n}^{(\alpha)}(x) C_{0}^{(\alpha)}(x) \\ & =\delta_{n 0} \frac{\pi 2^{1-2 \alpha} \Gamma(2 \alpha)}{\alpha[\Gamma(\alpha)]^{2}} \\ & =\delta_{n 0} \int\limits_{-1}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{\alpha-1 / 2} . & (8) \end{aligned}

Comparing (8) with the d-dimensional integral (4) we find that \alpha has to be chosen as \alpha=\frac{d}{2}-1. Using (6), relation (4) can now be denoted as

\int \mathrm{d}^{d} \Omega C_{i}^{d / 2-1}(\cos \theta) C_{j}^{d / 2-1}(\cos \theta)=\delta_{i j} \frac{\pi 2^{3-d} \Gamma(i-2+d)}{i !\left(i-1+\frac{d}{2}\right)\left[\Gamma\left(\frac{d}{2}-1\right)\right]^{2}},

or

\int \mathrm{d}^{d} \Omega C_{i}^{\alpha}(\cos \theta) C_{j}^{\alpha}(\cos \theta)=\delta_{i j} \frac{\pi 2^{1-2 \alpha} \Gamma(i+2 \alpha)}{i !(i+\alpha)[\Gamma(\alpha)]^{2}}, \quad\left(\alpha=\frac{d}{2}-1\right),   (9)

and, furthermore,

\int \mathrm{d}^{d} \Omega=\int\limits_{-1}^{1} \mathrm{~d} x\left(1-x^{2}\right)^{(d-3) / 2}=\frac{\pi 2^{3-d} \Gamma(d-2)}{\left(\frac{d}{2}-1\right)\left[\Gamma\left(\frac{d}{2}-1\right)\right]^{2}} .        (10)

The angular integral is now easy to perform. We first substitute x^{0} \rightarrow-\mathrm{i} x_{\mathrm{E}}^{0} to go to Euclidian coordinates. We also substitute p^{0} \rightarrow \mathrm{i} p_{\mathrm{E}}^{0}. Note that always the time components only are Wick-rotated!

\begin{aligned} \int \mathrm{d}^{d} x & \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{\left(-x^{2}\right)^{ν}} \\ = & -\mathrm{i} \int\limits^{d} \mathrm{~d}^{d} x_{\mathrm{E}} \frac{\mathrm{e}^{\mathrm{i} p_{\mathrm{E}} x_{\mathrm{E}} \cos \theta}}{\left(x_{\mathrm{E}}^{2}\right)^{ν}} \\ = & -\mathrm{i} \int\limits_{0}^{\infty} \mathrm{d} x_{\mathrm{E}} \frac{x_{\mathrm{E}}^{d-1}}{\left(x_{\mathrm{E}}^{2}\right)^{ν}} \Gamma(\alpha)\left(\frac{p_{\mathrm{E}} x_{\mathrm{E}}}{2}\right)^{-\alpha} \\ & \times \sum\limits_{k=0}^{\infty}(\alpha+k) \mathrm{i}^{k} J_{\alpha+k}\left(p_{\mathrm{E}} x_{\mathrm{E}}\right) \int \mathrm{d}^{d} \Omega C_{k}^{(\alpha)}(\cos \theta) \\ = & -\mathrm{i} \int\limits_{0}^{\infty} \mathrm{d} x_{\mathrm{E}}\left(x_{\mathrm{E}}\right)^{d-1-2 ν} \Gamma(\alpha)\left(\frac{p_{\mathrm{E}} x_{\mathrm{E}}}{2}\right)^{-\alpha} \alpha J_{\alpha}\left(p_{\mathrm{E}} x_{\mathrm{E}}\right) \int \mathrm{d}^{d} \Omega \\ = & -\mathrm{i} \frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \Gamma(d / 2-1)\left(\frac{p_{\mathrm{E}}}{2}\right)^{1-d / 2}\left(\frac{d}{2}-1\right) \\ & \times \int\limits_{0}^{\infty} \mathrm{d} x_{\mathrm{E}}\left(x_{\mathrm{E}}\right)^{d-1-2 ν-d / 2+1} J_{d / 2-1}\left(p_{\mathrm{E}} x_{\mathrm{E}}\right) \\ = & -\mathrm{i} 2 \pi^{d / 2}\left(\frac{p_{\mathrm{E}}}{2}\right)^{1-d / 2} \int\limits_{0}^{\infty} \mathrm{d} x_{\mathrm{E}} x_{\mathrm{E}}^{d / 2-2 ν} J_{d / 2-1}\left(p_{\mathrm{E}} x_{\mathrm{E}}\right) \\ = & -\mathrm{i} 2 \pi^{d / 2}\left(\frac{p_{\mathrm{E}}}{2}\right)^{1-d / 2}\left(p_{\mathrm{E}}\right)^{-1-d / 2+2 ν} \int\limits_{0}^{\infty} \mathrm{d} y y^{d / 2-2 ν} J_{d / 2-1}(y) . & (11) \end{aligned}

The remaining integral can be found in appropriate integral tables. { }^{10}

\int\limits_{0}^{\infty} \mathrm{d} y y^{d / 2-2 ν} J_{d / 2-1}(y)=2^{d / 2-2 ν} \frac{\Gamma\left(\frac{d}{4}+\frac{d}{4}-ν\right)}{\Gamma\left(\frac{d}{4}-\frac{d}{4}+ν\right)}.     (12)

Putting all this together we get

\int \mathrm{d}^{d} x \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{\left(-x^{2}\right)^{\nu}}=-\mathrm{i} \pi^{d / 2}\left(p_{\mathrm{E}}\right)^{2 ν-d} 2^{d / 2} 2^{d / 2-2 ν} \frac{\Gamma(d / 2-ν)}{\Gamma(\nu)} .     (13)

Finally we insert again d=4+2 \varepsilon to obtain the result

\int \mathrm{d}^{d} x \frac{\mathrm{e}^{\mathrm{i} p \cdot x}}{\left(-x^{2}\right)^{\nu}}=-\mathrm{i} \pi^{2}\left(\frac{p_{E}^{2}}{4}\right)^{\nu-2}\left(\frac{4 \pi}{p_{E}^{2}}\right)^{\varepsilon} \frac{\Gamma(2-\nu+\varepsilon)}{\Gamma(\nu)},        (14)

which completes our proof. Note that p_{E}^{2}=-p^{2}!


{ }^{9} Their properties can be found, for example, in M. Abramowitz and A. Stegun: Handbook of Mathematical Functions, Chap. 22. (Dover, 1972).

{ }^{10} See, for example, I. Gradshtein and I. Ryshik: Tables of Series, Products and Integrals, No. 6.151.14 (Harri Deutsch, Frankfurt am Main 1981).

Related Answered Questions