Question 20.3: Figure P.20.3 shows the cross-section of a single-cell, thin......

Figure P.20.3 shows the cross-section of a single-cell, thin-walled beam with a horizontal axis of symmetry. The direct stresses are carried by the booms B1 to B4B_{1}  to  B_{4}, while the walls are effective only in carrying shear stresses. Assuming that the basic theory of bending is applicable, calculate the position of the shear center S. The shear modulus G is the same for all walls:

Cell area = 135, 000 mm²;  Boom areas: B1=B4=450  mm2,    B2=B3=550  mm2B_{1}=B_{4}=450\;\mathrm{mm}^{2},\;\;B_{2}=B_{3}=550\;\mathrm{mm}^{2}

Wall Length (mm) Thickness (mm) 12, 34  500  0.8  23  580  1.0  41  200  1.2 \begin{array}{l l l}{{\mathrm{Wall}}}&{{\mathrm{~{Length~(mm)}}}}&{{\mathrm{~Thickness~(mm)}}}\\ {{\mathrm{~12,~34~}}}&{{\mathrm{~500~}}}&{{\mathrm{~0.8~}}}\\ {{\mathrm{~23~}}}&{{\mathrm{~580~}}}&{{\mathrm{~1.0~}}}\\ {{\mathrm{~41~}}}&{{\mathrm{~200~}}}&{{\mathrm{~1.2~}}}\end{array}

Answer:     197.2 mm to the right of the vertical through booms 2 and 3

p.20.3
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The shear center, S, lies on the horizontal axis of symmetry, the x axis. Therefore apply an arbitrary shear load, Sy,S_{y}, through S (Fig. S.20.3(a)). The internal shear flow distribution is given by Eq. (20.11), which, since Ixy=0,Sx=0,and  tD=0,I_{x y}=0,\,S_{x}=0,\,{\mathrm{and}}\,\,t_{\mathrm{D}}=0, simplifies to

qs=(SxIxxSyIxyIxxIyyIxy2)(0stDxds+r=1nBrxr)(SyIyySxIxyIxxIyyIxy2)(0stDJds+r=1nBryr)+qs,0q_{s}=-\left({\frac{S_{x}I_{x x}-S_{y}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}}\right) \left(\int_{0}^{s}t_{\mathrm{D}}x\,\mathrm{d}s+\sum\limits_{r=1}^{n}B_{r}x_{r}\right) -\left(\frac{S_{y}I_{y y}-S_{x}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}\right) \left(\int_{0}^{s}t_{\mathrm{DJ}}\,\mathrm{d}s+\sum\limits_{r=1}^{n}B_{r}y_{r}\right)+q_{s,0}           (20.11)

qs=SyIxxr=1nBryr+qs,0q_{s}=-{\frac{S_{y}}{I_{x x}}}\sum\limits_{r=1}^{n}B_{r}y_{r}+q_{s,0}          (i)

in which

Ixx=2×450×1002+2×550×1002=20×106mm4I_{x x}=2\times450\times100^{2}+2\times550\times100^{2}=20\times10^{6}{\mathrm{mm}}^{4}

Equation (i) then becomes

qs=0.5×107Syr=1nBryr+qs,0q_{s}=-0.5\times10^{-7}S_{y}\sum_{r=1}^{n}B_{r}y_{r}+q_{s,0}          (ii)

The first term on the right-hand side of Eq. (ii) is the qbq_{b} distribution (see Eq. (17.16)). To determine qbq_{b}, ‘cut’ the section in the wall 23. Then

qs=qb+qs,0q_{s}=q_{b}+q_{s,0}              (17.16)

qb,23=0qb,34=0.5×107Sy×550×(100)=2.75×103Sy=qb,12qb,41=2.75×103Sy0.5×107Sy×450×(100)=5.0×103Sy\begin{array}{l c r}{{q_{\mathrm{b,23}}=0}}&{{}}\\ {{q_{\mathrm{b,34}}=-0.5\times10^{-7}S_{y}\times550\times(-100)=2.75\times10^{-3}S_{y}=q_{\mathrm{b,12}}}}\\ {{q_{\mathrm{b,41}}=2.75\times10^{-3}S_{y}-0.5\times 10^{-7}S_{y}\times450\times(-100)=5.0\times10^{-3}S_{y}}}\end{array}

The value of shear flow at the ‘cut’ is obtained using Eq. (17.28), which, since G= constant, becomes

qs,0=qb  dsdsq_{s,0}=-{\frac{\oint q_{b}\;\mathrm{d}s}{\oint\mathrm{d}s}}                (17.28)

qs,0=(qb/t)dsds/tq_{s,0}=-{\frac{\oint(q_{\mathrm{b}}/t)\mathrm{d}s}{\oint\mathrm{d}s/t}}         (iii)

In Eq. (iii),

dst=5801.0+2×5000.8+2001.2=1996.7\oint{\frac{ds}{t}}={\frac{580}{1.0}}+2\times{\frac{500}{0.8}}+{\frac{200}{1.2}}=1996.7

Then, from Eq. (iii) and the above qbq_{b} distribution,

qs,0=Sy1996.7 ⁣(2×2.75×103×5000.8+5.0×103×2001.2)q_{s,0}=-{\frac{S_{y}}{1996.7}}\!\left(2\times{\frac{2.75\times10^{-3}\times500}{0.8}}+{\frac{5.0\times10^{-3}\times200}{1.2}}\right)

i.e.,

qs,0=2.14×103Syq_{s,0}=-2.14\times10^{-3}S_{y}

The complete shear flow distribution is shown in Fig. S.20.3(b).
Now taking moments about O in Fig. S.20.3(b) and using the result of Eq. (20.10),

Mq=2Aq12M_{q}=2A q_{12}            (20.10)

SyξS=2×0.61×103Sy×500×100+2.86×103Sy×200×5002.14×103Sy×2(13500500×200)S_{y}\xi_{S}=2\times0.61\times10^{-3}S_{y}\times500\times100+2.86\times10^{-3}S_{y}\times200\times500 -2.14\times10^{-3}S_{y}\times2(13500-500\times200)

which gives

ξ8=197.2mm\xi_{8}=197.2\,{\mathrm{mm}}
s.20.3.a
s.20.3.b

Related Answered Questions