Holooly Plus Logo

Question 20.1: Idealize the box section shown in Fig. P.20.1 into an arrang......

Idealize the box section shown in Fig. P.20.1 into an arrangement of direct stress carrying booms positioned at the four corners and panels that are assumed to carry only shear stresses. Hence, determine the distance of the shear center from the left-hand web.

Answer: 225 mm

p.20.1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From either Eq. (20.1) or (20.2), and referring to Fig. S.20.1(a)

B_{1}=\frac{t_{\mathrm{D}}b}{6}\left(2+\frac{\sigma_{2}}{\sigma_{1}}\right)                (20.1)

 

B_{2}=\frac{t_{\mathrm{D}}b}{6}\left(2+\frac{\sigma_{1}}{\sigma_{2}}\right)              (20.2)

 

B_{1}=60\times10+40\times10+\frac{500\times10}{6}(2+1)+\frac{300\times10}{6}(2-1)

i.e.,

\begin{array}{l}{{B_{1}=4000\mathrm{m}^{2}=B_{4}}}\\ {{B_{2}=50\times8+\times30\times8+\frac{500\times10}{6}(2+1)+\frac{300\times8}{6}(2-1)}}\end{array}

i.e.,

B_{2}=3540\,\mathrm{mm}^{2}=B_{3}

Since the section is now idealized, the shear flow distribution due to an arbitrary shear load S_{y} applied through the shear center is, from Eq. (20.11), given by

q_{s}=-\left({\frac{S_{x}I_{x x}-S_{y}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}}\right)\left(\int^s_0 t_Dx  ds+\sum\limits_{r=1}^{n}B_{r}x_{r}\right)

 

-\left({\frac{S_{y}I_{y y}-S_{x}I_{x y}}{I_{x x}I_{y y}-I_{x y}^{2}}}\right)\left(\int^s_0 t_Dy  ds+\sum\limits_{r=1}^{n}B_{r}y_{r}\right)+q_{s,0}          (20.11)

 

q_{s}=-{\frac{S_{y}}{I_{x x}}}\sum\limits_{r=1}^{n}B_{r}y_{r}+q_{s,0}            (i)

in which

I_{x x}=2\times4000\times150^{2}+2\times3540\times150^{2}=339\times10^{6}\,{\mathrm{mm}}^{4}.

‘Cut’ the section in the wall 12. Then

q_{\mathrm{b,12}}=q_{\mathrm{b,43}}=0

 

q_{\mathrm{b,}41}=-{\frac{S_{y}}{I_{x x}}}\times4000\times(-150)=1.77\times10^{-3}S_{y}

 

q_{\mathrm{b,32}}=-{\frac{S_{y}}{I_{x x}}}\times3540\times(-150)=1.57\times10^{-3}S_{y}

Since the shear load is applied through the shear center, the rate of twist is zero and q_{s,0} is given by Eq. (17.28) in which

q_{s,0}=-{\frac{\oint q_{b}\,\mathrm{d}s}{\oint\mathrm{d}s}}          (17.28)

 

{\oint{\frac{\mathrm{d}s}{t}}}=2\times{\frac{500}{10}}+{\frac{300}{10}}+{\frac{300}{8}}=167.5

Then

q_{s,0}=-{\frac{1}{167.5}}S_{y}\Biggl(1.57\times10^{-3}\times{\frac{300}{8}}-1.77\times10^{-3}\times{\frac{300}{10}}\Biggr)

which gives

q_{s,0}=-0.034\times10^{3}S_{y}

The complete shear flow distribution is then as shown in Fig. S.20.1(b).
Taking moments about the intersection of the horizontal axis of symmetry and the left-hand web,

S_{y}x_{S}=1.536\times10^{-3}S_{y}\times300\times500-2\times0.034\times10^{-3}S_{y}\times500\times150

from which

x_{S}=225\,{\mathrm{mm}}
s.20.1a
s.20.1.b

Related Answered Questions