Question 5.11: Find the magnetic field at point P on the axis of a tightly ...

Find the magnetic field at point P on the axis of a tightly wound solenoid (helical coil) consisting of n turns per unit length wrapped around a cylindrical tube of radius a and carrying current I (Fig. 5.25). Express your answer in terms of \theta_{1} \text { and } \theta_{2} (it’s easiest that way). Consider the turns to be essentially circular, and use the result of Ex. 5.6. What is the field on the axis of an infinite solenoid (infinite in both directions)?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use Eq. 5.41 for a ring of width dz, with nI dz:

B(z)=\frac{\mu_{0} I}{4 \pi}\left(\frac{\cos \theta}{ᴫ^{2}}\right) 2 \pi R=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}                          (5.41)

B=\frac{\mu_{0} n I}{2} \int \frac{a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}} d z . \text { But } z=a \cot \theta ,

so  d z=-\frac{a}{\sin ^{2} \theta} d \theta, \text { and } \frac{1}{\left(a^{2}+z^{2}\right)^{3 / 2}}=\frac{\sin ^{3} \theta}{a^{3}} .

B=\frac{\mu_{0} n I}{2} \int \frac{a^{2} \sin ^{3} \theta}{a^{3} \sin ^{2} \theta}(-a d \theta)=-\frac{\mu_{0} n I}{2} \int \sin \theta d \theta=\left.\frac{\mu_{0} n I}{2} \cos \theta\right|_{\theta_{1}} ^{\theta_{2}}=\frac{\mu_{0} n I}{2}\left(\cos \theta_{2}-\cos \theta_{1}\right) .

For an infinite solenoid, \theta_{2}=0, \theta_{1}=\pi, \text { so }\left(\cos \theta_{2}-\cos \theta_{1}\right)=1-(-1)=2, \text { and } B=\mu_{0} n I .

5.11

Related Answered Questions