Question 5.46: Use the Biot-Savart law (most conveniently in the form of Eq...

Use the Biot-Savart law (most conveniently in the form of Eq. 5.42 appropriate to surface currents) to find the field inside and outside an infinitely long solenoid of radius R, with n turns per unit length, carrying a steady current I.

B ( r )=\frac{\mu_{0}}{4 \pi} \int \frac{ K \left( r ^{\prime}\right) \times \hat{ ᴫ }}{ᴫ^{2}} d a^{\prime}     and  B ( r )=\frac{\mu_{0}}{4 \pi} \int \frac{ J \left( r ^{\prime}\right) \times \hat{ᴫ}}{ᴫ^{2}} d \tau^{\prime}                    (5.42)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Put the field point on the x axis, so r = (s, 0, 0). Then B = \frac{\mu_{0}}{4 \pi} \int \frac{( K \times \hat{ ᴫ })}{ ᴫ ^{2}} d a ; d a=R d \phi d z ; K =K \hat{\phi}=K(-\sin \phi \hat{ x }+ \cos \phi \hat{ y }) ;

ᴫ =(s-R \cos \phi) \hat{ x }-R \sin \phi \hat{ y }-z \hat{ z } .

K \times ᴫ \quad=K\left|\begin{array}{ccc}\hat{ x } & \hat{ y } & \hat{ z } \\-\sin \phi & \cos \phi & 0 \\(s-R \cos \phi) & (-R \sin \phi) & (-z)\end{array}\right|=K[(-z \cos \phi) \hat{ x }+(-z \sin \phi) \hat{ y }+(R-s \cos \phi) \hat{ z }] ;

ᴫ^{2}=z^{2}+R^{2}+s^{2}-2 R s \cos \phi .

The x and y components integrate to zero (z integrand is odd, as in Prob. 5.18).

B_{z}=\frac{\mu_{0}}{4 \pi} K R \int \frac{(R-s \cos \phi)}{\left(z^{2}+R^{2}+s^{2}-2 R s \cos \phi\right)^{3 / 2}} d \phi d z=\frac{\mu_{0} K R}{4 \pi} \int_{0}^{2 \pi}(R-s \cos \phi)\left\{\int_{-\infty}^{\infty} \frac{d z}{\left(z^{2}+d^{2}\right)^{3 / 2}}\right\} d \phi

 

\text { where } d^{2} \equiv R^{2}+s^{2}-2 R s \cos \phi . \text { Now } \int_{-\infty}^{\infty} \frac{d z}{\left(z^{2}+d^{2}\right)^{3 / 2}}=\left.\frac{2 z}{d^{2} \sqrt{z^{2}+d^{2}}}\right|_{0} ^{\infty}=\frac{2}{d^{2}} .

 

=\frac{\mu_{0} K R}{2 \pi} \int_{0}^{2 \pi} \frac{(R-s \cos \phi)}{\left(R^{2}+s^{2}-2 R s \cos \phi\right)} d \phi ;(R-s \cos \phi)=\frac{1}{2 R}\left[\left(R^{2}-s^{2}\right)+\left(R^{2}+s^{2}-2 R s \cos \phi\right)\right] .

 

=\frac{\mu_{0} K}{4 \pi}\left[\left(R^{2}-s^{2}\right) \int_{0}^{2 \pi} \frac{d \phi}{\left(R^{2}+s^{2}-2 R s \cos \phi\right)}+\int_{0}^{2 \pi} d \phi\right] .

 

\int_{0}^{2 \pi} \frac{d \phi}{a+b \cos \phi}=2 \int_{0}^{\pi} \frac{d \phi}{a+b \cos \phi}=\left.\frac{4}{\sqrt{a^{2}-b^{2}}} \tan ^{-1}\left[\frac{\sqrt{a^{2}-b^{2}} \tan (\phi / 2)}{a+b}\right]\right|_{0} ^{\pi}

 

=\frac{4}{\sqrt{a^{2}-b^{2}}} \tan ^{-1}\left[\frac{\sqrt{a^{2}-b^{2}} \tan (\pi / 2)}{a+b}\right]=\frac{4}{\sqrt{a^{2}-b^{2}}}\left(\frac{\pi}{2}\right)=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}} . \text { Here } a=R^{2}+s^{2} ,

 

b=-2 R s, \text { so } a^{2}-b^{2}=R^{4}+2 R^{2} s^{2}+s^{4}-4 R^{2} s^{2}=R^{4}-2 R^{2} s^{2}+s^{4}=\left(R^{2}-s^{2}\right)^{2} ; \sqrt{a^{2}-b^{2}}=\left|R^{2}-d^{2}\right| .

 

B_{z}=\frac{\mu_{0} K}{4 \pi}\left[\frac{\left(R^{2}-s^{2}\right)}{\left|R^{2}-s^{2}\right|} 2 \pi+2 \pi\right]=\frac{\mu_{0} K}{2}\left(\frac{R^{2}-s^{2}}{\left|R^{2}-s^{2}\right|}+1\right) .

Inside the solenoid, s<R, \text { so } B_{z}=\frac{\mu_{0} K}{2}(1+1)=\mu_{0} K . Outside the solenoid, s>R, \text { so } B_{z}=\frac{\mu_{0} K}{2}(-1+1)=0 .

Here K=n I, \text { so } B =\mu_{0} n I \hat{ z }(\text { inside), and } 0 \text { (outside) } (as we found more easily using \text { Ampére }’s law, in Ex. 5.9).

5.46

Related Answered Questions