Question 5.55: Just as ∇ · B = 0 allows us to express B as the curl of a ve...

Just as · B = 0 allows us to express B as the curl of a vector potential (B = × A), so · A = 0 permits us to write A itself as the curl of a “higher” potential: A = × W. (And this hierarchy can be extended ad infinitum.)

(a) Find the general formula for W (as an integral over B), which holds when B 0 at .

(b) Determine W for the case of a uniform magnetic field B. [Hint: see Prob. 5.25.]

(c) Find W inside and outside an infinite solenoid. [Hint: see Ex. 5.12.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } \nabla \cdot B =0, \nabla \times B =\mu_{0} J , \text { and } \nabla \cdot A =0, \nabla \times A = B \Rightarrow A =\frac{\mu_{0}}{4 \pi} \int \frac{ J }{ᴫ} d \tau^{\prime} , so

\nabla \cdot A =0, \nabla \times A = B , \text { and } \nabla \cdot W =0 \text { (we'll choose it so), } \nabla \times W = A \Rightarrow W =\frac{1}{4 \pi} \int \frac{ B }{ᴫ} d \tau^{\prime} .

(b) W will be proportional to B and to two factors of r (since differentiating twice must recover B), so I’ll try something of the form W =\alpha r ( r \cdot B )+\beta r^{2} B , and see if I can pick the constants  \alpha \text { and } \beta in such a way that \nabla \cdot W =0 \text { and } \nabla \times W = A .

\nabla \cdot W =\alpha[( r \cdot B )( \nabla \cdot r )+ r \cdot \nabla ( r \cdot B )]+\beta\left[r^{2}( \nabla \cdot B )+ B \cdot \nabla \left(r^{2}\right)\right] . \nabla r =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=1+1+1=3 ;

\nabla ( r \cdot B )= r \times( \nabla \times B )+ B \times( \nabla \times r )+( r \cdot \nabla ) B +( B \cdot \nabla ) r ; but B is constant, so all derivatives of B vanish, and ∇ × r = 0 (Prob. 1.63), so

\nabla ( r \cdot B )=( B \cdot \nabla ) r =\left(B_{x} \frac{\partial}{\partial x}+B_{y} \frac{\partial}{\partial y}+B_{z} \frac{\partial}{\partial z}\right)(x \hat{ x }+y \hat{ y }+z \hat{ z })=B_{x} \hat{ x }+B_{y} \hat{ y }+B_{z} \hat{ z }= B ;

\nabla \left(r^{2}\right)=\left(\hat{ x } \frac{\partial}{\partial x}+\hat{ y } \frac{\partial}{\partial y}+\hat{ z } \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}\right)=2 x \hat{ x }+2 y \hat{ y }+2 z \hat{ z }=2 r . So

\nabla \cdot W =\alpha[3( r \cdot B )+( r \cdot B )]+\beta[0+2( r \cdot B )]=2( r \cdot B )(2 \alpha+\beta), \text { which is zero if } 2 \alpha+\beta=0 .

\nabla \times W =\alpha[( r \cdot B )( \nabla \times r )- r \times \nabla ( r \cdot B )]+\beta\left[r^{2}( \nabla \times B )- B \times \nabla \left(r^{2}\right)\right]=\alpha[0-( r \times B )]+\beta[0-2( B \times r )]=-( r \times B )(\alpha-2 \beta)=-\frac{1}{2}( r \times B ) (Prob. 5.25). So we want \alpha-2 \beta=1 / 2 . Evidently \alpha-2(-2 \alpha)=5 \alpha=1 / 2 ,

\text { or } \alpha=1 / 10 ; \beta=-2 \alpha=-1 / 5 . Conclusion: W =\frac{1}{10}\left[ r ( r \cdot B )-2 r^{2} B \right] . (But this is certainly not unique.)

\text { (c) } \nabla \times W = A \Rightarrow \int( \nabla \times W ) \cdot d a =\int A \cdot d a . \text { Or } \oint W \cdot d l =\int A \cdot d a . Integrate around the amperian loop shown, taking W to point parallel to the axis, and choosing W = 0 on the axis:

-W l=\int_{0}^{s}\left(\frac{\mu_{0} n I}{2}\right) l \bar{s} d \bar{s}=\frac{\mu_{0} n I}{2} \frac{s^{2} l}{2} (using Eq. 5.72 for A).

A =\frac{\mu_{0} n I}{2} s \hat{\phi}, \quad \text { for } s \leq R                    (5.72)

W =-\frac{\mu_{0} n I s^{2}}{4} \hat{ z } (s < R).

\text { For } s>R,-W l=\frac{\mu_{0} n I R^{2} l}{4}+\int_{R}^{s}\left(\frac{\mu_{0} n I}{2}\right) \frac{R^{2}}{\bar{s}} l d \bar{s}=\frac{\mu_{0} n I R^{2} l}{4}+\frac{\mu_{0} n I R^{2} l}{2} \ln (s / R) ;

W =-\frac{\mu_{0} n I R^{2}}{4}[1+2 \ln (s / R)] \hat{ z }   (s > R).

5.55

Related Answered Questions