Question 5.59: (a) Prove that the average magnetic field, over a sphere of ...

(a) Prove that the average magnetic field, over a sphere of radius R, due to steady currents inside the sphere, is

Bave=μ04π2mR3B _{ ave }=\frac{\mu_{0}}{4 \pi} \frac{2 m }{R^{3}} ,                    (5.93)

where m is the total dipole moment of the sphere. Contrast the electrostatic result, Eq. 3.105. [This is tough, so I’ll give you a start:

Bave=143πR3BdτB _{ ave }=\frac{1}{\frac{4}{3} \pi R^{3}} \int B d \tau .

Eave=14πϵ0pR3E _{ ave }=-\frac{1}{4 \pi \epsilon_{0}} \frac{ p }{R^{3}}                         (3.105)

Write B as (× A), and apply Prob. 1.61(b). Now put in Eq. 5.65, and do the surface integral first, showing that

1da=43πr\int \frac{1}{ᴫ} d a =\frac{4}{3} \pi r ^{\prime} .

A(r)=μ04πJ(r)dτA ( r )=\frac{\mu_{0}}{4 \pi} \int \frac{ J \left( r ^{\prime}\right)}{ᴫ} d \tau^{\prime}                      (5.65)

(see Fig. 5.65). Use Eq. 5.90, if you like.]

m=12(r×J)dτm =\frac{1}{2} \int( r \times J ) d \tau                   (5.90)

(b) Show that the average magnetic field due to steady currents outside the sphere is the same as the field they produce at the center.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  Bave=1(3/4)πR3Bdτ=34πR3(×A)dτ=34πR3A×da=34πR3μ04π{Jdτ}×da=3μ0(4π)2R3J×{1da}dτB _{ ave }=\frac{1}{(3 / 4) \pi R^{3}} \int B d \tau=\frac{3}{4 \pi R^{3}} \int( \nabla \times A ) d \tau=-\frac{3}{4 \pi R^{3}} \oint A \times d a =-\frac{3}{4 \pi R^{3}} \frac{\mu_{0}}{4 \pi} \oint\left\{\int \frac{ J }{ᴫ} d \tau^{\prime}\right\} \times d a =-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \int J \times\left\{\oint \frac{1}{ᴫ} d a \right\} d \tau^{\prime} .

Note that J depends on the source point rr ^{\prime}, not on the field point r. To do the surface integral, choose the (x, y, z) coordinates so that  rr ^{\prime} lies on the z axis (see diagram).

Then =R2+(z)22Rzcosθᴫ=\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta} , while da=R2sinθdθdϕr^d a =R^{2} \sin \theta d \theta d \phi \hat{ r } .

By symmetry, the x and y components must integrate to zero; since the z component of r^\hat{ r } is cosθ\cos \theta, we have

1da=z^cosθR2+(z)22RzcosθR2sinθdθdϕ=2πR2z^0πcosθsinθR2+(z)22Rzcosθdθ\oint \frac{1}{ᴫ} d a =\hat{ z } \int \frac{\cos \theta}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta}} R^{2} \sin \theta d \theta d \phi=2 \pi R^{2} \hat{ z } \int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta}} d \theta .

 Let ucosθ, so du=sinθdθ\text { Let } u \equiv \cos \theta, \text { so } d u=-\sin \theta d \theta .

=2πR2z^11uR2+(z)22Rzudu=2 \pi R^{2} \hat{ z } \int_{-1}^{1} \frac{u}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} u}} d u

 

=2πR2z^{2[2(R2+(z)2)+2Rzu]3(2Rz)2R2+(z)22Rzu}11=\left.2 \pi R^{2} \hat{ z }\left\{-\frac{2\left[2\left(R^{2}+\left(z^{\prime}\right)^{2}\right)+2 R z^{\prime} u\right]}{3\left(2 R z^{\prime}\right)^{2}} \sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} u}\right\}\right|_{-1} ^{1}

 

=2πR2z^3(Rz)2{[R2+(z)2+Rz]R2+(z)22Rz[R2+(z)2Rz]R2+(z)2+2Rz}=-\frac{2 \pi R^{2} \hat{ z }}{3\left(R z^{\prime}\right)^{2}}\left\{\left[R^{2}+\left(z^{\prime}\right)^{2}+R z^{\prime}\right] \sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime}}-\left[R^{2}+\left(z^{\prime}\right)^{2}-R z^{\prime}\right] \sqrt{R^{2}+\left(z^{\prime}\right)^{2}+2 R z^{\prime}}\right\}

 

=[2π3(z)2z^]{[R2+(z)2+Rz]Rz[R2+(z)2Rz](R+z)}=-\left[\frac{2 \pi}{3\left(z^{\prime}\right)^{2}} \hat{ z }\right]\left\{\left[R^{2}+\left(z^{\prime}\right)^{2}+R z^{\prime}\right]\left|R-z^{\prime}\right|-\left[R^{2}+\left(z^{\prime}\right)^{2}-R z^{\prime}\right]\left(R+z^{\prime}\right)\right\}

 

={4π3zz^=4π3r,(r<R);4πR33(z)2z^=4π3R3(r)3r,(r>R).}=\left\{\begin{array}{l}\frac{4 \pi}{3} z^{\prime} \hat{ z }=\frac{4 \pi}{3} r ^{\prime}, \quad\left(r^{\prime}<R\right); \\\frac{4 \pi R^{3}}{3\left(z^{\prime}\right)^{2}} \hat{ z }=\frac{4 \pi}{3}\frac{R^{3}}{\left(r^{\prime}\right)^{3}} r ^{\prime},\left(r^{\prime}>R\right) .\end{array}\right\}

For now we want r<R, so Bave=3μ0(4π)2R34π3(J×r)dτ=μ04πR3(J×r)dτ. Now m=12(r×J)dτr^{\prime}<R, \text { so } B _{ ave }=-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \frac{4 \pi}{3} \int\left( J \times r ^{\prime}\right) d \tau^{\prime}=-\frac{\mu_{0}}{4 \pi R^{3}} \int\left( J \times r ^{\prime}\right) d \tau^{\prime} . \text { Now } m =\frac{1}{2} \int( r \times J ) d \tau

(Eq. 5.90), so Bave =μ04π2mR3B _{\text {ave }}=\frac{\mu_{0}}{4 \pi} \frac{2 m }{R^{3}} . qed

(b) This time  r>R, so Bave=3μ0(4π)2R34π3R3(J×r(r)3)dτ=μ04πJ×^2dτr^{\prime}>R, \text { so } B _{ ave }=-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \frac{4 \pi}{3} R^{3} \int\left( J \times \frac{ r ^{\prime}}{\left(r^{\prime}\right)^{3}}\right) d \tau^{\prime}=\frac{\mu_{0}}{4 \pi} \int \frac{ J \times \hat{ᴫ} }{ᴫ^{2}} d \tau^{\prime} , wherenow goes from the source point to the center (=r)\left( ᴫ =- r ^{\prime}\right) .

Thus  Bave =Bcen B _{\text {ave }}= B _{\text {cen }} . qed

5.59

Related Answered Questions