Question 5.60: A uniformly charged solid sphere of radius R carries a total...

A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity ω about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r, θ) where r \gg R .

(d) Find the exact potential at a point (r, θ) outside the sphere, and check that it is consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, θ) inside the sphere (Prob. 5.30), and check that it is consistent with (b).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Problem 5.53 gives the dipole moment of a shell: m =\frac{4 \pi}{3} \sigma \omega R^{4} \hat{ z } . \text { Let } R \rightarrow r, \sigma \rightarrow \rho d r and integrate:

m =\frac{4 \pi}{3} \omega \rho \hat{ z } \int_{0}^{R} r^{4} d r=\frac{4 \pi}{3} \omega \rho \frac{R^{5}}{5} \hat{ z } . \quad \text { But } \rho=\frac{Q}{(4 / 3) \pi R^{3}}, \text { so } m =\frac{1}{5} Q \omega R^{2} \hat{ z } .

(b)  B _{ ave }=\frac{\mu_{0}}{4 \pi} \frac{2 m }{R^{3}}=\frac{\mu_{0}}{4 \pi} \frac{2 Q \omega}{5 R} \hat{ z } .

(c)  A \cong \frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{2}} \hat{\phi}=\frac{\mu_{0}}{4 \pi} \frac{Q \omega R^{2}}{5} \frac{\sin \theta}{r^{2}} \hat{\phi} .

(d) Use Eq. 5.69, with R \rightarrow \bar{r}, \sigma \rightarrow \rho d \bar{r} , and integrate:

A (r, \theta, \phi)= \begin{cases}\frac{\mu_{0} R \omega \sigma}{3} r \sin \theta \hat{\phi}, & (r \leq R) \\ \frac{\mu_{0} R^{4} \omega \sigma}{3} \frac{\sin \theta}{r^{2}} \hat{\phi}, & (r \geq R)\end{cases}                      (5.69)

A =\frac{\mu_{0} \omega \rho}{3} \frac{\sin \theta}{r^{2}} \hat{\phi} \int_{0}^{R} \bar{r}^{4} d \bar{r}=\frac{\mu_{0} \omega}{3} \frac{3 Q}{4 \pi R^{3}} \frac{\sin \theta}{r^{2}} \frac{R^{5}}{5} \hat{\phi}=\frac{\mu_{0}}{4 \pi} \frac{Q \omega R^{2}}{5} \frac{\sin \theta}{r^{2}} \hat{\phi} .
This is identical to (c); evidently the field is pure dipole, for points outside the sphere.

(e) According to Prob. 5.30, the field is B =\frac{\mu_{0} \omega Q}{4 \pi R}\left[\left(1-\frac{3 r^{2}}{5 R^{2}}\right) \cos \theta \hat{ r }-\left(1-\frac{6 r^{2}}{5 R^{2}}\right) \sin \theta \hat{ \theta }\right] .
The average obviously points in the z direction, so take the z component of \hat{ r }(\cos \theta) \text { and } \hat{ \theta }(-\sin \theta) :

B_{ ave }=\frac{\mu_{0} \omega Q}{4 \pi R} \frac{1}{(4 / 3) \pi R^{3}} \int\left[\left(1-\frac{3 r^{2}}{5 R^{2}}\right) \cos ^{2} \theta+\left(1-\frac{6 r^{2}}{5 R^{2}}\right) \sin ^{2} \theta\right] r^{2} \sin \theta d r d \theta d \phi

 

=\frac{3 \mu_{0} \omega Q}{\left(4 \pi R^{2}\right)^{2}} 2 \pi \int_{0}^{\pi}\left[\left(\frac{r^{3}}{3}-\frac{3}{5} \frac{R^{5}}{5 R^{2}}\right) \cos ^{2} \theta+\left(\frac{R^{3}}{3}-\frac{6}{5} \frac{R^{5}}{5 R^{2}}\right) \sin ^{2} \theta\right] \sin \theta d \theta

 

=\frac{3 \mu_{0} \omega Q}{8 \pi R^{4}} R^{3} \int_{0}^{\pi}\left(\frac{16}{75} \cos ^{2} \theta+\frac{7}{75} \sin ^{2} \theta\right) \sin \theta d \theta=\frac{3 \mu_{0} \omega Q}{8 \pi R} \frac{1}{75} \int_{0}^{\pi}\left(7+9 \cos ^{2} \theta\right) \sin \theta d \theta

 

=\left.\frac{\mu_{0} \omega Q}{200 \pi R}\left(-7 \cos \theta-3 \cos ^{3} \theta\right)\right|_{0} ^{\pi}=\frac{\mu_{0} \omega Q}{200 \pi R}(20)=\frac{\mu_{0} \omega Q}{10 \pi R}(\text { same as (b) }) .

Related Answered Questions