Question 3.6: Compute the maximum torsional shear stress in a shaft having...

Compute the maximum torsional shear stress in a shaft having a diameter of 10 mm when it carries a torque of 4.10 N . m.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective: Compute the torsional shear stress in the shaft.
Given: \quad Torque =T=4.10 \mathrm{~N} \cdot \mathrm{m} ; shaft diameter =D=10 \mathrm{~mm}.
c= radius of the shaft =D / 2=5.0 \mathrm{~mm}
Analysiçs: Use Equation (3-7) to compute the torsional shear stress: \tau_{\max }=T c / J . J is the polar moment of inertia for the shaft: J=\pi D^{4} / 32 (see Appendix 1 ).

APPENDIX 1 Properties of Areas
\begin{array}{ll}A=\text { area } & r=\text { radius of gyration }=\sqrt{I / A} \\I=\text {moment of inertia } & J=\text { polar moment of inertia } \\S=\text { section modulus } &Z_{p}=\text { polar section modulus }\end{array}
\begin{array}{ll}A=\pi D^{2} / 4 & r=D / 4 \\I=\pi D^{4} / 64 & J=\pi D^{4} / 32 \\S=\pi D^{3} / 32 & Z_{p}=\pi D^{3} / 16\end{array}
\begin{array}{ll}A=\pi\left(D^{2}-d^{2}\right) / 4 & r=\frac{\sqrt{\left(D^{2}+d^{2}\right)}}{4} \\I=\pi\left(D^{4}-d^{4}\right) / 64 & J=\pi\left(D^{4}-d^{4}\right) / 32 \\S=\pi\left(D^{4}-d^{4}\right) / 32 D & Z_{p}=\pi\left(D^{4}-d^{4}\right) / 16 D\end{array}
\begin{aligned}&A=H^{2} \quad\quad\quad r=H / \sqrt{12} \\&I=H^{4} / 12 \\&S=H^{3} / 6\end{aligned}
\begin{array}{ll}A=B H & r_{x}=H / \sqrt{12} \\I_{x}=B H^{3} / 12 & r_{y}=B / \sqrt{12} \\I_{y}=H B^{3} / 12 & \\S_{x}=B H^{2} / 6 & \\S_{y}=H B^{2} / 6 &\end{array}
\begin{aligned}&A=B H-b h \\&I_{x}=\frac{B H^{3}-b h^{3}}{12} \quad S_{x}=\frac{B H^{3}-b h^{3}}{6 H}\quad r_{x}=0.289 \sqrt{\frac{B H^{3}-b h^{3}}{B H-b h}} \\&I_{y}=\frac{H B^{3}-h b^{3}}{12} \quad S_{y}=\frac{H B^{3}-h b^{3}}{6 B} \quad r_{y}=0.289 \sqrt{\frac{H B^{3}-h b^{3}}{H B-h b}}\end{aligned}
\begin{aligned}&A=B H / 2 \quad\quad\quad r=H / \sqrt{18} \\&I=B H^{3} / 36 \\&S=B H^{2} /24\end{aligned}
\begin{aligned}&A=\pi D^{2} / 8 \quad\quad\quad r=0.132 D \\&I=0.007 D^{4} \\&S=0.024D^{3}\end{aligned}
\begin{aligned}&A=0.866 D^{2} \quad\quad\quad r=0.264 D \\&I=0.06 D^{4} \\&S=0.12 D^{3}\end{aligned}
\begin{aligned}A &=H(a+B) / 2 \\y &=\frac{H(a+2 B)}{3(a+B)} \quad\quad\quad\quad\quad\quad S=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{12(a+2 B)} \\I_{x} &=\frac{H^{3}\left(a^{2}+4a B+B^{2}\right)}{36(a+B)} \quad\quad r=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{18(a+B)^{2}} \\y &=\underset{\text { Maximum distance from } x \text {-axis to }}{\text { outer surface of section }}\end{aligned}
\begin{aligned}&A=\pi b h \\&I=\frac{\pi h^{3} b}{4} \\&S=\frac{\pi h^{2} b}{4} \\&r=h / 2\end{aligned}

Results
\begin{aligned}&J=\pi D^{4} / 32=\left[(\pi)(10 \mathrm{~mm})^{4}\right] / 32=982 \mathrm{~mm}^{4} \\&\tau_{\max }=\frac{(4.10 \mathrm{~N}\cdot \mathrm{m})(5.0 \mathrm{~mm}) 10^{3} \mathrm{~mm}}{982 \mathrm{~mm}^{4}}=20.9 \mathrm{~N} / \mathrm{mm}^{2}=20.9 \mathrm{MPa}\end{aligned}
Comment The maximum torsional shear stress occurs at the outside surface of the shaft around its entire circumference.

Related Answered Questions