Question 3.7: Compute the angle of twist of a 10-mm-diameter shaft carryin...

Compute the angle of twist of a 10-mm-diameter shaft carrying 4.10 N . m of torque if it is 250 mm long and made of steel with G = 80 GPa. Express the result in both radians and degrees.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective:
Compute the angle of twist in the shaft.
Given:
Torque =T=4.10 \mathrm{~N} \cdot \mathrm{m}; length =L=250 \mathrm{~mm}.
Shaft diameter =D=10 \mathrm{~mm} ; G=80 \mathrm{GPa}.
Analysis:

Use Equation (3-11) (\theta=T L / G J). For consistency, let T=4.10 \times 10^{3} \mathrm{~N} \cdot \mathrm{mm} and G=80 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}. From Example Problem 3-6, J=982 \mathrm{~mm}^{4}.

Results:
\theta=\frac{T L}{G J}=\frac{\left(4.10 \times 10^{3} \mathrm{~N} \cdot \mathrm{mm}\right)(250 \mathrm{~mm})}{\left(80 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}\right)\left(982 \mathrm{~mm}^{4}\right)}=0.013 \mathrm{rad}
Using \pi \mathrm{rad}=180^{\circ},
\theta=(0.013 \mathrm{rad})(180 \% \pi \mathrm{rad})=0.75^{\circ}
Comment:

Over the length of 250 \mathrm{~mm}, the shaft twists 0.75^{\circ}.

Related Answered Questions