Question 12.8: An automotive type internal-expanding double-shoe brake is s...

An automotive type internal-expanding double-shoe brake is shown in Fig. 12.18. The face width of the friction lining is 40 mm and the maximum intensity of normal pressure is limited to 1 N/mm². The coefficient of friction is 0.32. The angle \theta_{l} can be assumed to be zero. Calculate:
(i) the actuating force P; and
(ii) the torque-absorbing capacity of the brake.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } w=40 mm \quad \mu=0.32 \quad p_{\max }=1 N / mm ^{2} .

R = 125 mm
Step I Actuating force
It is assumed that the maximum normal pressure will occur between the lining on the right-hand shoe and the brake drum. For the right-hand shoe,

\theta_{1}=0 \quad \theta_{2}=120^{\circ} \quad \phi_{\max .}=90^{\circ} \quad \sin \phi_{\max .}=1 .

The distance h of the pivot from the axis of the brake drum is given by

h=\sqrt{86.6^{2}+50^{2}}=100 mm .

From Eq. (12.19),

M_{f}=\frac{\mu p_{\max } \cdot R w\left[4 R\left(\cos \theta_{1}-\cos \theta_{2}\right)-h\left(\cos 2 \theta_{1}-\cos 2 \theta_{2}\right)\right]}{4 \sin \phi_{\max .}}               (12.19).

M_{f}=\frac{\mu p_{\max } \cdot R w\left[4 R\left(\cos \theta_{1}-\cos \theta_{2}\right)-h\left(\cos 2 \theta_{1}-\cos 2 \theta_{2}\right)\right]}{4 \sin \phi_{\max } .} .

=\frac{0.32(1)(125)(40)\left[4(125)\left(1-\cos 120^{\circ}\right)-100\left(1-\cos 240^{\circ}\right)\right]}{4(1)} .

= 240 000 N-mm
From Eq. (12.20),

M_{n}=\frac{p_{\max } R w h\left[2\left(\theta_{2}-\theta_{1}\right)-\left(\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)\right]}{4 \sin \phi_{\max }}             (12.20).

M_{n}=\frac{p_{\max } R w h\left[2\left(\theta_{2}-\theta_{1}\right)-\left(\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)\right]}{4 \sin \phi_{\max .}} .

=\frac{1(125)(40)(100)\left[2\left(\frac{120 \pi}{180}\right)-\sin \left(240^{\circ}\right)\right]}{4(1)} .

= 631 851.95 N-mm
From Eq. (12.22),

P=\frac{M_{n}-M_{f}}{C}                 (12.22).

P=\frac{M_{n}-M_{f}}{C} .

=\frac{631851.95-240000}{100.9+86.6}=2089.88 N         (i).

Step II Torque-absorbing capacity
From Eq. (12.21), the torque \left(M_{t}\right)_{R} for the righthand
shoe is given by

M_{t}=\frac{\mu R^{2} p_{\max .} w\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\sin \phi_{\max }}     (12.21).

\left(M_{t}\right)_{R}=\frac{\mu R^{2} p_{\max } \cdot w\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\sin \phi_{\max }} .

=\frac{0.32(125)^{2}(1)(40)\left(1-\cos 120^{\circ}\right)}{1} .

= 300 000 N-mm.

The maximum intensity of pressure for the left-hand shoe is unknown. For identical shoes, it can be seen from the expressions of M_{n} \text { and } M_{f} , that both are proportional to \left(p_{\max }\right) . For left-hand shoe, the maximum intensity of pressure is taken as \left(p_{\max }^{\prime}\right) . Therefore, for the left-hand shoe

M_{f}^{\prime}=\frac{240000 p_{\max }^{\prime}}{p_{\max }}=\frac{(240000) p_{\max }^{\prime}}{(1)} .

=240000 p_{\max }^{\prime} .

Similarly,

M_{n}^{\prime}=\frac{631851.95 p_{\max }^{\prime}}{p_{\max }}=\frac{(631851.95) p_{\max .}^{\prime}}{(1)} .

=631851.95 p_{\max }^{\prime} .

For the left-hand shoe,

P=\frac{M_{n}^{\prime}+M_{f}^{\prime}}{C} .

\text { or } \quad 2089.88=\frac{(240000+631851.95) p_{\max }^{\prime}}{(100.9+86.6)} .

∴          p_{\max .}=0.45 N / mm ^{2} .

Since the shoes are identical,

\left(M_{t}\right)_{L}=300000\left(\frac{p_{\max }^{\prime}}{p_{\max }}\right)=300000\left(\frac{0.45}{1}\right) .

= 135000 N-mm.

The total torque-absorbing capacity of the brake is given by,

M_{t}=300000+135000=435000 N – mm .

or          435 N-m             (ii).

Related Answered Questions