Question 12.12: Following data is given for a caliper disk brake with annula...

Following data is given for a caliper disk brake with annular pad, for the front wheel of the motorcycle:
torque capacity = 1500 N-m
outer radius of pad = 150 mm
inner radius of pad = 100 mm
coefficient of friction = 0.35
average pressure on pad = 2 MPa
number of pads = 2
Calculate the angular dimension of the pad.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } M_{t}=1500 N – m \quad R_{o}=150 mm .

R_{i}=100 mm \quad p_{a}=2 MPa \quad \mu=0.35 .

Number of pads = 2
Step I Actuating force
Since there are two pads, the torque capacity of one
pad is (1500/2) or 750 N-m.

From Eq. (12.29),

R_{f}=\frac{2}{3} \frac{\left(R_{o}^{3}-R_{i}^{3}\right)}{\left(R_{o}^{2}-R_{i}^{2}\right)}                    (12.29).

R_{f}=\frac{2}{3} \frac{\left(R_{o}^{3}-R_{i}^{3}\right)}{\left(R_{o}^{2}-R_{i}^{2}\right)}=\frac{2}{3} \frac{\left(150^{3}-100^{3}\right)}{\left(150^{2}-100^{2}\right)}=126.67 mm

From Eq. (12.30),

M_{t}=\mu P R_{f}                   (12.30).

M_{t}=\mu P R_{f} .

750(10)^{3}=0.35 P(126.67) \text { or } P=16916.85 N

Step II Angular dimension of pad
P = average pressure × area of pad

\left[2 MPa =2 N / mm ^{2}\right] .

16916.85=2 A \quad \text { or } \quad A=8458.42 mm ^{2}

From Eq. (12.31),

A=\frac{1}{2} \theta\left(R_{o}^{2}-R_{i}^{2}\right)         (12.31),

A=\frac{1}{2} \theta\left(R_{o}^{2}-R_{i}^{2}\right) .

\text { or } \quad 8458.42=\frac{1}{2} \theta\left(150^{2}-100^{2}\right) .

\theta=1.3533 \text { radians } .

\text { or } \quad \theta=1.3533\left(\frac{180}{\pi}\right)=77.54^{\circ} .

The angular dimension of the pad can be taken as 80°.

Related Answered Questions