The cut off frequency of a waveguide depends upon
(a) The dimensions of waveguide
(b) The dielectric property of the medium in the waveguide
(c) The characteristic imoedance of the waveguide
(d) The transverse and axial components of the fields
The cut off frequency of a waveguide depends upon
(a) The dimensions of waveguide
(b) The dielectric property of the medium in the waveguide
(c) The characteristic imoedance of the waveguide
(d) The transverse and axial components of the fields
where, \nu _{o}=\frac{c}{\sqrt{\mu_{r} \in_{r}}}
f_{c}=\frac{c}{\sqrt{\mu_{r} \in_{r} \times 2}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}
So, f_{c} depends on ‘a’ and ‘b’ (dimensions of waveguide)
f_{c} \propto \frac{1}{\sqrt{\mu_{r} \in_{r}}}So, f_{c} depends upon the dielectric property of the medium in the waveguide.
Hence, the correct option is (a and b)