Question 4.5.1: Consider a parallel plate waveguide with plate separation d ...

Consider a parallel plate waveguide with plate separation d as shown in figure. The electric and magnetic fields for the TEM mode are given by

E_{x}=E_{0} e^{-j k z+j \omega t}, H_{y}=\frac{E_{0}}{\eta} e^{-j k z+j \omega t}

Where k = T < one.

(a) Determine the surface charge densities \rho_{s} on the plates at x = 0 and x = d.

(b) Determine the surface current densities \vec{J}_{s} on the same plates.

(c) Prove that \rho_{s} \text { and } \vec{J}_{s} satisfy the current continuity condition.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given that wave is propagating in +2 direction.

\begin{aligned}&E_{x}=E_{0} e^{+j(\omega t-k z)} \\&H_{y}=\frac{E_{0}}{\eta} e^{+j(\omega t-k z)}\end{aligned}

(a)  \vec{E}=\frac{P_{S}}{E} a_{x} \text { or } E_{x}=\frac{P_{S}}{E}

 

P_{S}=\in E_{x}=\in E_{0} \cos (\omega t-k z)

(b)   J_{S}=\vec{\eta} \times \vec{H}=\text { for surface } x=0,

\begin{aligned}&\vec{J}_{S}=\vec{a}_{x} \times \vec{H}=H_{y} \hat{a}_{z}=\frac{E_{0}}{\eta} \cos (\omega t-k z) \hat{a}_{2} \\&k=\eta \omega E \\&\Rightarrow \frac{1}{\eta}=\frac{\omega E}{K} \\&\vec{J}_{S}=\omega \in \frac{E_{0}}{K} \cos (\omega t-k z) \vec{a}_{2} \\&\text { at, } x=d, \vec{J}_{S}=-\frac{E_{0}}{\eta} \cos (\omega t-k z) a_{2}\end{aligned}

(c) From current continuity \operatorname{eg}^{n}. for time varying fields given by

\begin{aligned}&\nabla . \vec{J}=\frac{-\partial}{\partial t} P \Rightarrow \frac{d}{d z} J S J=\frac{-\partial}{\partial t} P . \\&\begin{aligned}\frac{d}{d z} &\left[\frac{\in \omega E_{0}}{k} \cos (\omega t-k z)\right]=\omega \in E_{0} \sin (\omega t-k z)\end{aligned} \\&\begin{aligned}\Rightarrow \frac{-\partial}{\partial t} P &=\frac{\partial}{\partial t}\left(\in E_{0} \cos (\omega t-k z)\right.\\&=\omega \in E_{0} \sin (\omega t-k z),\end{aligned} \\&\text { So, } \frac{d}{d z} J S z=\frac{-\partial}{\partial t} P .\end{aligned}

Thus current continuity equation verified.

Related Answered Questions