Question 11.9: Calculate the coupling capacitor CC required in Fig. 11.20 t...

Calculate the coupling capacitor C_{C} required in Fig. 11.20 to provide a low frequency 3 dB point at 125 Hz if R_{s} = 600 Ω, h_{ie} = 1 kΩ , h_{fe} = 60, R_{1} = 5 kΩ and R_{2} = 1.25 kΩ . For (a) an ideal bypass capacitor C_{E}, (b) a practical bypass capacitor with R_{CE} = 25Ω .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The lower 3 dB frequency, f_{1}=\frac{1}{2\pi (R_{s}+R_{i}^{′})C_{C}}

(a)                        R_{i}^{′}= R_{1} || R_{2} || h_{ie}

C_{C}=\frac{1}{2\pi \int{1}(R_{s}+R_{i}^{′}) }=\frac{1}{125\times 2\pi \times [600+5000\parallel 1.25\times 10^{3}\parallel 1000]}

=\frac{1}{125\times 2\pi \times [600+5000]}

C_{C} = 1.15  \mu F

(b)                          R_{i}^{′}= R_{1} || R_{2} || [h_{ie} + (1 + h_{fe}) R_{CE}]

= 5000 || 1.25 × 10^{3} || [1000 + (61) (25)] = 716.31   \Omega

C_{C}=\frac{1}{2\pi \int{1}(R_{S}+R_{i}^{'}) }

=\frac{1}{125\times 2\pi \times [600+716.31]}=0.97   \mu F

Related Answered Questions