Question 4.5.6: In an air-filled rectangular waveguide, the vector electric ...

In an air-filled rectangular waveguide, the vector electric field is given by

\vec{E}=\cos (2 \pi y) \exp \left[-j\left(\frac{40 \pi}{3}\right) z+j \omega t\right] \hat{i}_{x} V / m

Find vector magnetic field and the phase velocity of the wave inside the waveguide.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}\vec{E} &=\cos (2 x y) \exp \left[-j\left(\frac{40 \pi}{3}\right) 2+j \omega t\right]_{ V / m }^{\hat{i}_{x}} \\\vec{\beta} &=\frac{40 \pi}{3} \\\bar{\eta} &=\frac{\omega \mu}{\bar{\beta}}=\frac{\omega \times 4 \pi \times 10^{-7}}{40 \pi / 3}=3 \omega \times 10^{-8} \\H_{y} &=\frac{E_{x}}{\eta}=\frac{1}{3 \omega \times 10^{-8}}\left\{\cos (2 x y) e\left\{-J\left(\frac{40 \pi}{3}\right) z+j \omega t\right\}\right.\\\vec{H} &=H_{x} j_{y}\end{aligned}

Related Answered Questions