Coal with known mass analysis is burned with theoretical amount of air. The mole fractions of the product gases, their apparent molar mass, and the air-fuel ratio are to be determined.
Assumptions 1 Combustion is stoichiometric and thus complete. 2 Combustion products contain \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, and \mathrm{O} only (ash disregarded). 3 Combustion gases are ideal gases.
Analysis The molar masses of \mathrm{C}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~S}, and air are 12, 2, 32, 32, and 29 kg/kmol, respectively (Table A-1). We now consider 100 kg of coal for simplicity. Noting that the mass percentages in this case correspond to the masses of the constituents, the mole numbers of the constituent of the coal are determined to be
N_{\mathrm{C}}=\frac{m_{C}}{M_{C}}=\frac{84.36 \mathrm{~kg}}{12 \mathrm{~kg} / \mathrm{kmol}}=7.030 \mathrm{kmol}
N_{\mathrm{H} 2}=\frac{m_{\mathrm{H}_2}}{M_{\mathrm{H}_{2}}}=\frac{1.89 \mathrm{~kg}}{2 \mathrm{~kg} / \mathrm{kmol}}=0.9450 \mathrm{kmol}
N_{\mathrm{O} 2}=\frac{m_{\mathrm{O}_{2}}}{M_{\mathrm{O}_{2}}}=\frac{4.40 \mathrm{~kg}}{32 \mathrm{~kg} / \mathrm{kmol}}=0.1375 \mathrm{kmol}
N_{\mathrm{N} 2}=\frac{m_{\mathrm{N}_{2}}}{M_{\mathrm{N}_{2}}}=\frac{0.63 \mathrm{~kg}}{28 \mathrm{~kg} / \mathrm{kmol}}=0.0225 \mathrm{kmol}
N_{\mathrm{S}}=\frac{m_{\mathrm{S}}}{M_{\mathrm{S}}}=\frac{0.89 \mathrm{~kg}}{32 \mathrm{~kg} / \mathrm{kmol}}=0.0278 \mathrm{kmol}
Ash consists of the non-combustible matter in coal. Therefore, the mass of ash content that enters the combustion chamber is equal to the mass content that leaves. Disregarding this non-reacting component for simplicity, the combustion equation may be written as
7.03 \mathrm{C}+0.945 \mathrm{H}_{2}+0.1375 \mathrm{O}_{2}+0.0225 \mathrm{~N}_{2}+0.0278 \mathrm{~S}+a_{\mathrm{th}}\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)
\rightarrow x \mathrm{CO}_{2}+y \mathrm{H}_{2} \mathrm{O}+z \mathrm{SO}_{2}+w \mathrm{~N}_{2}
Performing mass balances for the constituents gives
C balance: x = 7.03
\mathrm{H}_{2} balance: y = 0.945
S balance: z = 0.0278
\mathrm{O}_{2} balance: 0.1375 + a_\text{th} = x + 0.5y + z → a_\text{th} = 7.393
\mathrm{N}_{2} balance: w = 0.0225 + 3.76 a_\text{th} = 0.0225 + 3.76 × 7.393 = 27.82
Substituting, the balanced combustion equation without the ash becomes
7.03 \mathrm{C}+0.945 \mathrm{H}_{2}+0.1375 \mathrm{O}_{2}+0.0225 \mathrm{~N}_{2}+0.0278 \mathrm{~S}+7.393\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)
\rightarrow 7.03 \mathrm{CO}_{2}+0.945 \mathrm{H}_{2} \mathrm{O}+0.0278 \mathrm{SO}_{2}+27.82 \mathrm{~N}_{2}
The mole fractions of the product gases are determined as follows.
N_{\text {prod }} =7.03+0.945+0.0278+27.82=35.82 \mathrm{kmol}
y_{\mathrm{CO}_2}= \frac{N_{\mathrm{CO}_{2}}}{N_{\text {prod }}}=\frac{7.03 \mathrm{kmol}}{35.82 \mathrm{kmol}}=0.1963
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{N_{\mathrm{H}_{2} \mathrm{O}}}{N_{\text {prod }}}=\frac{0.945 \mathrm{kmol}}{35.82 \mathrm{kmol}}=0.02638
y_{\mathrm{SO}_{2}}= \frac{N_{\mathrm{SO}_{2}}}{N_{\text {prod }}}=\frac{0.0278 \mathrm{kmol}}{35.82 \mathrm{kmol}}=0.000776
y_{\mathrm{N}_{2}}= \frac{N_{\mathrm{N}_{2}}}{N_{\text {prod }}}=\frac{27.82 \mathrm{kmol}}{35.82 \mathrm{kmol}}=0.7767
Then, the apparent molar mass of product gases becomes
M_{\text {prod }}=\frac{m_{\text {prod }}}{N_{\text {prod }}} =\frac{(7.03 \times 44+0.945 \times 18+0.0278 \times 64+27.82 \times 28) \mathrm{kg}}{35.82 \mathrm{kmol}}
=30.9 \mathrm{~kg} / \mathrm{kmol}
Finally, the air-fuel mass ratio is determined from its definition to be
\mathrm{AF}=\frac{m_{\text {air }}}{m_{\text {fuel }}}=\frac{(7.393 \times 4.76 \mathrm{kmol})(29 \mathrm{~kg} / \mathrm{kmol})}{100 \mathrm{~kg}}=10.2 \text{ kg air}/ \mathrm{kg} fuel
That is, 10.2 kg of air is supplied for each kg of coal in the furnace.
Discussion We could also solve this problem by considering just 1 kg of coal, and still obtain the same results. But we would have to deal with very small fractions in calculations in this case.