Question 7.60: A dc shunt motor rated 10 kW connected to 250 V supply is lo...

A dc shunt motor rated 10 kW connected to 250 V supply is loaded to draws 35 A armature current running at a speed of 1250 rpm. Given R_{a} = 0.5 \Omega

(a) Determine the load torque if the rotational loss is 500 \Omega .

(b) Determine the motor efficiency if the shunt field resistance is 250 \Omega .

(c) Determine the armature current for the motor efficiency to be maximum and its value. What is the corresponding load torque and speed?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
E_{a}=250-0.5 \times 35=232.5 V

Electromagnetic power,             P_{e}=E_{a} I_{a}=P_{out}  (gross)

P_{\text {out }}(\text { gross })=232.5 \times 35= 8137.5 W

P_{\text {rot }}=500 W

P_{\text {out }} \text { (net) }=8137.5-500= 7637.5 W

Speed              \omega=\frac{2 \pi}{60} \times 1250=130.9 rad / s

Load torque,                     T_{L}=\frac{7637.5}{130.9}=58.35 Nm

(b)                           I_{f}=\frac{250}{250}=  A

I_{L}=35+1=36 A

P_{\text {in }}=250 \times 36= 9000 W

Efficiency,           \eta=\frac{P_{\text {out }}(\text { net })}{P_{\text {in }}}=\frac{7637.5}{9000}=8486 \%

(c) Constant loss,             P_{c}=P_{r o t}+P_{s h} ; P_{s h} is neglected

Or                           P_{k}=500+250 \times 1=750 W

For maximum efficiency                             I_{a}^{2} R_{a}=P_{k}

Or                                      I_{a}=\sqrt{\frac{750}{0.5}}=38.73 A

Total loss =2 \times 750= 1500 W

I_{L}=38.73+1= 39.73 A

P_{i n}=250 \times 39.73 A = 9932.5 W

\eta_{\max }=1-\frac{1500}{9932.5}=84.9 \%

Speed                               E_{a}=250-0.5 \times 38.73= 230.64V

n=1250 \times \frac{230.64}{232.5}=1240 rpm (marginally different)

\omega=\frac{2 \pi}{60} \times 1240=129.85 rad / s

P_{\text {out }}(\text { gross })=230.64 \times 38.73= 8932.7 W

P_{\text {out }}(\text { net })=8932.7-500= 8432.7 W

T_{L}=\frac{8432.7}{129.85}=84.94 Nm

Related Answered Questions