Question 7.63: A PMDC motor has an armature resistance of 4.2 Ω . When 6 V ...

A PMDC motor has an armature resistance of 4.2 \Omega . When 6 V supply is connected to the motor it runs at a speed 12,125 rpm drawing a current of 14.5 mA on no-load

(a) Calculate its torque constant

(b) What is the value of rotational loss?

With an applied voltage of 6 V,

(c) calculate the stalled torque and stalled current of the motor (motor shaft held stationary)

(d) at a gross output of 1.6 W, calculate the armature current and efficiency. Assume that the rotational loss varies as square of speed.

(e) calculate the motor output at a speed of 10,250 rpm and the efficiency.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

No load          V_{t}=6 V , I_{ mo }=14.5 mA , n=12125 rpm    or    \omega=1269.7 rad / s

(a)                       E_{a}=6-14.5 \times 10^{3} \times 4.2= 5.939 V

5.939=K_{m} \omega=K_{m} \times 1269.7

Or                                 K_{m}=4.677 \times 10^{-3}

(b) Rotational loss,               P_{r o t}=E_{a} I_{a} ;   there is no load

=5.939 \times 14.5 \times 10^{-3}=0.0861 W

(c) Stalled current

\omega=0    so   E_{a}=0

 

I_{a}( stall )=\frac{6}{4.2}=1.4285 A

Torque (stall) =K_{m} I_{a} \text { (stall) }=4.677 \times 10^{-3} \times 1.428=6.67 m Nm

(d)                         P_{\text {out }}(\text { gross })=1.6 W =E_{a} I_{a}

 

\left(6-4.2 I_{a}\right) I_{a}=1.6 4.2 I_{a}^{2}-6 I_{a}+1.6=0

Solving we find                 I_{a}=0.354 A , 1.074 A

Thus

I_{a}=0.354 A ;                higher value rejected

E_{a}=6-0.854 \times 4.2=4.513 V =K_{m} \omega

 

\omega=\frac{4.513 \times 10^{3}}{4.677}=965 rad / s

Rotational loss (proportional to square of speed)

P_{r o t}=0.0861 \times\left(\frac{965}{1269.7}\right)^{2}= 0.05 W

P_{\text {out }}(\text { net })=P_{\text {out }}(\text { gross })-P_{\text {rot }}=1.6-0.05= 1.55 W

Power input,                       P_{i}=V_{t} I_{a}=6 \times 0.354= 2121 W

\eta=\frac{1.55}{2.124} \times 100=73 \%

(e) Motor speed,                          n = 10250 rpm     or        \omega=1073.4 rad / s

E_{a}=K_{m}^{\omega}=4.513 \times 10^{-3} \times 1073.4= 4.844 V

I_{a}=\frac{6-4.844}{4.2}= 0.275 A

P_{\text {out }}(\text { gross })=P_{e}=E_{a} I_{a}=4.844 \times 0.275= 1.332 W

P_{r o t}=0.0861 \times\left(\frac{1073.4}{1269.7}\right)^{2}= 0.0615 W

P_{o u t}(\text { net })=1.332-0.0615= 1.27 W

P_{i n}=6 \times 0.275= 1.65 W

\eta=\frac{1.27}{1.65} \times 100=77 \%

Related Answered Questions