Question 2.1: TRANSMISSION LINE PARAMETERS OF A COAXIAL LINE The fields of...

TRANSMISSION LINE PARAMETERS OF A COAXIAL LINE The fields of a traveling TEM wave inside the coaxial line of Figure 2.3 can be expressed as

\ \bar{E} =\frac{V_{0}\hat{\rho } }{\rho \ln b/a} e^{-\gamma z}

 

\ \bar{H} =\frac{I_{0}\hat{\phi } }{2\pi\rho} e^{-\gamma z},

,where γ is the propagation constant of the line. The conductors are assumed to have a surface resistivity R_{s} ,and the material filling the space between the conductors is assumed to have a complex permittivity \ \epsilon =\epsilon ^{\prime  } -j\epsilon ^{\prime \prime } and a permeability \ \mu =\mu _{0} \mu _{r}. Determine the transmission line parameters.

Screenshot (3)
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From (2.17)\ L=\frac{\mu }{\left|I_{0}\right| ^{2} }\int_{s}^{}{\bar{H}.\bar{H}^{*}ds } H/m.–(2.20)\ G=\frac{\omega \acute{\acute{\epsilon }} }{\left|V_{0}\right| ^{2} }\int_{s}^{}{\bar{E}.\bar{E}^{*}ds }S/m. and the given fields the parameters of the coaxial line can be calculated as

\ L=\frac{\mu }{\left(2\pi \right)^{2} }\int_{\phi =0}^{2\pi }{\int_{\rho =a}^{b}{\frac{1}{\rho ^{2}} } } \rho d\rho d\phi =\frac{\mu }{2\pi } \ln b/a H/m,

 

\ C=\frac{ \epsilon ^{ \prime } }{\left(\ln b/a\right) ^{2} }\int_{\phi =0}^{2\pi }{\int_{\rho =a}^{b}{\frac{1}{\rho ^{2}} } } \rho d\rho d\phi =\frac{2\pi \epsilon ^{\prime  } }{\ln b/a } F/m,

 

\ R=\frac{R_{s} }{\left(2\pi\right) ^{2} }\left\{\int_{\phi =0}^{2\pi }\frac{1}{a^{2} }ad\phi+ {\int_{\phi =0}^{2\pi } \frac{1}{b^{2} } } b d\phi \right\} =\frac{R_{s} }{2\pi } \left(\frac{1}{a}+\frac{1}{b} \right) \Omega /m,

 

\ G=\frac{\omega \epsilon ^{\prime \prime } }{\left(\ln b/a\right)^{2} }\int_{\phi =0}^{2\pi }{\int_{\rho =a}^{b}{\frac{1}{\rho ^{2}} } } \rho d\rho d\phi=\frac{2\pi \omega\epsilon ^{\prime \prime } }{\ln b/a} S/m.

Table 2.1 summarizes the parameters for coaxial, two-wire, and parallel plate lines. As we will see in the next chapter, the propagation constant, characteristic impedance, and attenuation of most transmission lines are usually derived directly from a field theory solution; the approach here of first finding the equivalent circuit parameters (L, C, R, G) is useful only for relatively simple lines. Nevertheless, it provides a helpful intuitive concept for understanding the properties of a transmission line and relates a transmission line to its equivalent circuit model.

COAX

TWO-WIRE

PARALLEL PLATE

L \ \frac{\mu }{2\pi } \ln \frac{b}{a} \ \frac{\mu }{\pi } \cos h^{-1} \left(\frac{D}{2a} \right) \ \frac{\mu d}{w }
C \ \frac{2\pi\acute{\epsilon }  }{\ln b/a} \ \frac{\pi\acute{\epsilon } }{ \cos h^{-1}\left(D/2a\right) } \ \frac{\acute{\epsilon } w }{d}
R \ \frac{R_{s} }{2\pi } \left(\frac{1}{a}+\frac{1}{b}  \right) \ \frac{R_{s} }{\pi a} \ \frac{2R_{s}}{w }
G \ \frac{2\pi \omega \acute{\acute{\epsilon }}  }{\ln b/a} \ \frac{\pi \omega \acute{\acute{\epsilon } } }{\cos h^{-1}\left(D/2a\right)} \ \frac{\omega \acute{\acute{\epsilon }}w  }{d}

Related Answered Questions