Question 6.39: The voltage across a 200-mH inductor is given by v(t) = 3t^2...

The voltage across a 200-mH inductor is given by

v(t) = 3t^{2} + 2t + 4 V for t > 0.

Determine the current i(t) through the inductor. Assume that i(0) = 1 A.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}} \longrightarrow \mathrm{i}=\frac{1}{\mathrm{L}} \int_{0}^{\mathrm{t}} \mathrm{idt}+\mathrm{i}(0)

 

\mathrm{i}=\frac{1}{200 \times 10^{-3}} \int_{0}^{\mathrm{t}}\left(3 \mathrm{t}^{2}+2 \mathrm{t}+4\right) \mathrm{dt}+1

 

=\left.5\left(\mathrm{t}^{3}+\mathrm{t}^{2}+4 \mathrm{t}\right)\right|_{0} ^{\mathrm{t}}+1

 

\mathrm{i}(\mathrm{t})={5 \mathrm{t}}^{3}+5 \mathrm{t}^{2}+20 \mathrm{t}+1 \mathrm{A}

Related Answered Questions