Question 12.1.1: Solubility of a Solid in a Liquid Estimate the solubility of...

Solubility of a Solid in a Liquid

Estimate the solubility of solid naphthalene in liquid n-hexane at 20°C.

Data:^{3}

Naphthalene (C _{10} H _{8}, molecular weight = 128.19)

Melting point: 80.2°C

Heat of fusion: 18.804 kJ/mol

Density of the solid: 1.0253 g/cc at 20°C

Density of the liquid: 0.9625 g/cc at 100°C

Sublimation pressure of the solid:

\log _{10} P^{\text {sub }}( bar )=8.722-\frac{3783}{T} (T in K)

The heat capacities of liquid and solid naphthalene may be assumed to be equal

^{3}Reference: R. C. Weast, ed., Handbook of Chemistry and Physics, 68th ed., Chemical Rubber Publishing Co., Cleveland (1987), pp. C-357, D-214.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The solubility parameter and liquid molar volume for n-hexane are given in Table 9.6-1 as \delta_{2}=7.3 \text { and } \underline{V}_{2}^{ L }=132 cc/mol, respectively. Since the liquidmolar volume of naphthalene given in the data is for a temperature 80°C higher than the temperature of interest, and the volume change on melting of naphthalene is small, the molar volume of liquid naphthalene below its melting temperature will be taken to be that of the solid; that is,

 

\underline{V}_{1}^{ L }=\frac{128.19 g / mol }{1.0253 g / cc }=125 cc / mol

 

The heat of sublimation of naphthalene is not given. However, we can compute this quantity from the vapor pressure curve of the solid and the Clausius-Clapeyron equation (Eq. 7.7-5a) by taking P to be equal to the sublimation pressure P^{ sub }, \Delta \underline{H} o equal the heat of sublimation, and setting \Delta \underline{V}=\underline{V}^{\overline{ V }}-\underline{V}^{ S }=\Delta_{ sub } \underline{V} \cong R T / P^{ sub }. Thus

 

\frac{d \ln P^{ vap }}{d T}=\frac{\Delta_{ vap } \underline{H}}{R T^{2}} (7.7-5a)

 

\frac{\Delta_{\text {sub } \underline{H}}}{R T^{2}}=\frac{d \ln P^{ sub }}{d T}=2.303 \frac{d \log _{10} P^{ sub }}{d T}=+2.303 \frac{(3783)}{T^{2}}

 

and

 

\Delta_{\text {sub }} \underline{H}=2.303(3783)(8.314 J / mol )=72434 J / mol

 

Next,

 

\Delta_{\text {vap }} \underline{U}=\Delta_{\text {sub }} \underline{H}-\Delta_{\text {fus }} \underline{H}-R T=72434-18804-8.314 \times 293.15=51193 J / mol

 

so that

 

\delta_{1}=\left(\frac{51193 J / mol }{125 cc / mol \times 4.184 J / cal }\right)^{1 / 2}=9.9( cal / cc )^{1 / 2}

 

Now using Eq. 12.1-7 with \Delta C_{ P }=0, and the regular solution expression for the activity coefficient, we obtain

 

\ln x_{1}=-\ln \gamma_{1}-\left\{\frac{\Delta_{ fus } \underline{H}\left(T_{t}\right)}{R T}\left[1-\frac{T}{T_{t}}\right]+\frac{\Delta C_{ P }}{R}\left[1-\frac{T_{t}}{T}+\ln \left(\frac{T_{t}}{T}\right)\right]\right\} (12.1-7)

 

\ln x_{1}=-\frac{V_{1}^{ L }\left(\delta_{1}-\delta_{2}\right)^{2} \Phi_{2}^{2}}{R T}-\frac{\Delta_{ fus } H\left(T_{m}\right)}{R T}\left(1-\frac{T}{T_{m}}\right)

 

As a first guess, assume that x_{1} will be small, so that

 

\Phi_{2}=\frac{x_{2} \underline{V}_{2}^{ L }}{x_{1} \underline{V}_{1}^{ L }+x_{2} \underline{V}_{2}^{ L }} \approx 1

 

In this case

 

\begin{aligned}\ln x_{1}=& \frac{-125 \frac{ cc }{ mol } \times(9.9-7.3)^{2} \frac{ cal }{ cc } \times 4.184 \frac{ J }{ cal }}{8.314 \frac{ J }{ mol K } \times 293.15 K } \\&-\frac{18804 \frac{ J }{ mol }}{8.314 \frac{ J }{ mol K } \times 293.15 K }\left(1-\frac{293.15}{353.35}\right) \\=&-1.451-1.314=-2.765\end{aligned}

 

x_{1}=0.063

 

With such a large value for x_{1} we must go back and correct the value of \Phi_{2} for the presence of the solute and repeat the computation. Thus

 

\Phi_{2}=\frac{0.937 \times 132}{0.937 \times 132+0.063 \times 125}=0.94

 

and

 

\begin{aligned}\ln x_{1} &=1.282-1.314=2.596 \\x_{1} &=0.0746\end{aligned}

 

The results of the next two iterations are x_{1}=0.0768 \text { and } x_{1}=0.0772, respectively. This last prediction is in reasonable agreement with the experimental result of x_{1}=0.09 .^{4}

 

Comment

Note that had we assumed ideal solution behavior, \gamma_{1}=1 \text { and } \ln \gamma_{1}=0, so that

 

\begin{aligned}\ln x_{1} &=-1.314 \\x_{1} &=0.269\end{aligned}

 

which is a factor of 3 too large.

 

^4G. Scatchard, Chem. Rev., 8, 329 (1931).

Related Answered Questions