Question 4.4: (a) Derive expressions for the hoop and radial stresses deve...

(a) Derive expressions for the hoop and radial stresses developed in a solid disc of radius R when subjected to a thermal gradient of the form T = Kr. Hence determine the position and magnitude of the maximum stresses set up in a steel disc of 150 mm diameter when the temperature rise is 150°C. For steel, α=12×106α = 12 × 10^{-6} per °C and E = 206.8 GN/m².

(b) How would the values be changed if the temperature at the centre of the disc was increased to 30°C, the temperature rise across the disc maintained at 150°C and the thermal gradient now taking the form T = a + br?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The hoop and radial stresses are given by eqns. (4.29) and (4.30) as follows:

σr=ABr2Ear2Trdr\sigma_{r}=A-\frac{B}{r^{2}}-\frac{E a}{r^{2}} \int T r d r               (4.29)

σH=A+Br2+Ear2TrdrEaT\sigma_{H}=A+\frac{B}{r^{2}}+\frac{E a}{r^{2}} \int T r d r-E a T                   (4.30)

σr=ABr2αEr2Trdr\sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha E}{r^{2}}\int{Trdr}                (1)
σH=A+Br2+αEr2TrdrαET\sigma _{H}=A+\frac{B}{r^{2}}+ \frac{\alpha E}{r^{2}}\int{Trdr}-\alpha ET           (2)
In this case Trdr=Kr2dr=Kr33 \int{Trdr}=K\int{r^{2}dr}=\frac{Kr^{3}}{3}

the constant of integration being incorporated into the general constant A.

∴         σr=ABr2αEKr3\sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha E Kr}{3}    (3)

σH=A+Br2+αEKr3αEKr\sigma _{H}=A+\frac{B}{r^{2}}+\frac{\alpha E Kr}{3}-\alpha EKr    (4)

Now in order that the stresses at the centre of the disc, where r = 0, shall not be infinite, B must be zero and hence B/r² is zero. Also σr=0σ_{r} = 0 at r = R.
Therefore substituting in (3),

0=AαEKR3 andA=αEKR30=A-\frac{\alpha EKR}{3} \text{ and} A=\frac{\alpha EKR}{3}

Substituting in (3) and (4) and rearranging,

σr=αEK3(Rr)\sigma _{r}=\frac{\alpha E K}{3} (R-r)
σH=αEK3(R2r)\sigma _{H}=\frac{\alpha E K}{3} (R-2r)

The variation of both stresses with radius is linear and they will both have maximum values at the centre where r = 0.

σrmax=σHmax=αEKR3\sigma _{r_{max}}=\sigma _{H_{max}}=\frac{\alpha E KR}{3}
=12×106×206.8×109×K×0.0753=\frac{12\times 10^{-6}\times 206.8\times 10^{9}\times K\times 0.075}{3}

Now  T = Kr and T must therefore be zero at the centre of the disc where r is zero. Thus, with a known temperature rise of 150°C, it follows that the temperature at the outside radius must be 150°C

∴       150=K×0.075150=K\times 0.075
∴       K=2000/mK=2000^{\circ} /m

i.e.   σrmax=σHmax=12×106×206.8×109×2000×0.0753\sigma _{r_{max}}=\sigma _{H_{max}}=\frac{12\times 10^{-6}\times 206.8\times 10^{9}\times 2000\times 0.075}{3}
=124  MN/m2=124   MN/m^{2}

(b) With the modified form of temperature gradient

Trdr=(a+br)rdr=(ar+br2)dr\int{Tr dr} =\int{(a+br)rdr} =\int{(ar+br^{2})dr}
=ar22+br33=\frac{ar^{2}}{2}+\frac{br^{3}}{3}

Substituting in (1) and (2),

σr=ABr2αEr2[ar22+br33]\sigma _{r}=A-\frac{B}{r^{2}}-\frac{\alpha E}{r^{2}}[\frac{ar^{2}}{2}+\frac{br^{3}}{3} ]              (5)

σH=A+Br2+αEr2[ar22+br33]αET\sigma _{H}=A+\frac{B}{r^{2}}+\frac{\alpha E}{r^{2}}[\frac{ar^{2}}{2}+\frac{br^{3}}{3} ]-\alpha ET      (6)
Now  T=a+brT=a+br

Therefore at the inside of the disc where r = 0 and T = 30°C,

30=a+b(0)30=a+b(0)             (7)
and     a=30

At the outside of the disc where T = 180°C,

180=a+b(0.075)180=a+b(0.075)                      (8)
(8) – (7)           150=0.075b150=0.075b    ∴    b=2000b=2000

Substituting in (5) and (6) and simplifying,

σr=ABr2αE(15+667r)\sigma _{r}=A-\frac{B}{r^{2}}-\alpha E(15+667r)   (9)

σH=A+Br2+αE(15+667r)αET\sigma _{H}=A+\frac{B}{r^{2}}+\alpha E(15+667r)-\alpha ET      (10)

Now for finite stresses at the centre,

B=0

Also, at r = 0.075,      σr=0 \sigma _{r}=0  and  T=180°CT=180 °C

Therefore substituting in (9),

0=A12×106×206.8×109(15+667×0.075)0=A-12\times 10^{-6}\times 206.8\times 10^{9}(15+667\times 0.075)
0=A12×206.8×103×650=A-12\times 206.8\times 10^{3}\times 65
∴     A=161.5×106A=161.5\times 10^{6}

From (9) and (10) the maximum stresses will again be at the centre where r = 0,

i.e.    σrmax=σHmax=AαET=124  MN/m2\sigma _{r_{max}}=\sigma _{H_{max}}=A-\alpha ET=124   MN/m^{2} , as before.

N.B. The same answers would be obtained for any linear gradient with a temperature difference of 150°C. Thus a solution could be obtained with the procedure of part (a) using the form of distribution T = Kr with the value of T at the outside taken to be 150°C (the value at r = 0 being automatically zero).

Related Answered Questions