Products

Holooly Rewards

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

Holooly Ads. Manager

Advertise your business, and reach millions of students around the world.

Holooly Tables

All the data tables that you may search for.

Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Holooly Sources

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Holooly Help Desk

Need Help? We got you covered.

Chapter 4

Q. 4.5

An initially unstressed short steel cylinder, internal radius 0.2 m and external radius 0.3 m, is subjected to a temperature distribution of the form T = a + b  log_{e} r to ensure constant heat flow through the cylinder walls. With this form of distribution the radial and circumferential stresses at any radius r , where the temperature is T. are given by

\sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha ET}{2(1-\nu )}

\sigma _{H}=A+\frac{B}{r^{2}} -\frac{\alpha ET}{2(1-\nu )}-\frac{ E\alpha b}{2(1-\nu )}

If the temperatures at the inside and outside surfaces are maintained at 200°C and 100°C respectively, determine the maximum circumferential stress set up in the cylinder walls. For steel, E = 207 GN/m², ν = 0.3 and \alpha = 11 × 10^{-6} per °C

Step-by-Step

Verified Solution

T=a+b\log _{e}r
200=a+b\log _{e}0.2=a+b(0.6931-2.3026)
∴     200=a-1.6095 b                  (1)
also            100=a+b\log _{e}0.3=a+b(1.0986-2.3026)
100=a-1.204   b                       (2)
(2)-(1),                100=-0.4055   b
b=-246.5=-247
Also                \frac{E\alpha }{2(1-\nu )} =\frac{207\times 10^{9}\times 11\times 10^{-6}}{2(1-0.29)}
=1.6\times 10^{6}

Therefore substituting in the given expression for radial stress

\sigma _{r}=A-\frac{B}{r^{2}} -1.6\times 10^{6}T

At r = 0.3, \sigma _{r} = 0 and T = 100

0=A-\frac{B}{0.09}-1.6 \times 10^{6} \times 100      (3)

At r = 0.2, \sigma _{r} = 0 and T = 200

0=A-\frac{B}{0.04}-1.6\times 10^{6}\times 200    (4)

(4)-(3)     0=B(11.1-25)-1.6\times 10^{8}
B=-11.5\times 10^{6}

and from (4),

A=25B+3.2\times 10^{8}
=(-2.88+3.2)10^{8}=0.32\times 10^{8}

substituting in the given expression for hoop stress,

\sigma _{H}=0.32\times 10^{8}-\frac{11.5\times 10^{6}}{r^{2}} -1.6\times 10^{6}T+1.6\times 10^{6}\times 247

At  r = 0.2, \sigma _{H}=(0.32-2.88-3.2+3.96)10^{8}=-180    MN/m^{2}

At r = 0.3,    \sigma _{H}=(0.32-1.28-1.6+3.96)10^{8}=+140   MN/m^{2}

The maximum tensile circumferential stress therefore occurs at the outside radius and has a value of 140 MN/m². The maximum compressive stress is 180 MN/m² at the inside radius