Question A.1: Illustrate the use of the preceding equations to take a time...

Illustrate the use of the preceding equations to take a time domain waveform and transform it to the z domain.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For example, the unit step function u(t) can be transformed. In this case, f(kT) = 1 for all k > 0. Therefore,

F_{s}(z) = \sum\limits_{k=0}^{\infty }{} z^{-k} = (1+z^{-1}+z^{-2}+z^{-3}… )             (A.7)

We make use of the following mathematical identity:

\frac{x}{x-1}=1+x^{-1}+x^{-2}+x^{-3}…      (A.8)

Therefore,

F_{s}(z)= \frac{z}{z-1}      (A.9)

Other functions can be transformed in a similar way. For example, the natural exponential f(kT) = e ^{-akT} :

F_{s}(z) = \sum\limits_{k=0 }^{\infty}{}e ^{-akT}z^{-k} = 1 + e ^{-aT}z^{-1}+e ^{-a2T}z^{-2}+e ^{-a3T}z^{-3}…      (A.10)

This can be rewritten as

F_{s}(z) = 1+ (e^{aT} z)^{−1} + (e^{aT} z)^{−2} + (e^{aT} z)^{−3} …    (A.11)

Again using the math identity (A.8),

F_{s}(z) =\frac{e^{aT} z}{e^{aT} z-1}= \frac{z}{z-e^{-aT} }   (A.12)

In this way, the third column in Table A.1 can be constructed.

So far, we have talked about ideal sampling (multiplying by impulse functions). In reality, we also ‘‘hold’’ the value for an entire clock period. Thus, each element in the infinite series in (A.6), is multiplied by a square wave of length of one period:

F_{s}(z) = \sum\limits_{k=0}^{\infty }{} f(kT)z^{-k}                  (A.6)

g_{hold} (t) = u(t) − u(t − T)       (A.13)

 

G_{hold} (s) = \frac{1 − e^{−sT} }{s}

Some care should be taken in general when manipulating and converting systems from the s to the z domains. Note especially that, in general:

Z[G(s)H(s)] ≠ G(z)H(z)       (A.14)

Table A.1 common laplace Transforms and z Transforms
Time Domain Function y(t)/Discrete Time Domain y(kT)  F(s) (Continuous Laplace Equivalent) F(z) (Discrete Laplace Equivalent)  Comments and Additional Explanations
\delta (t) 1 1 Unit impulse  function
\delta (kT)
u(t) \frac{1}{s} \frac{z}{z-1} Unit step function;  also an integrator
u (kT)
t \frac{1}{s^{2}} \frac{T_{z}}{(z-1)^{2} } Ramp
Kt
t^{2} \frac{2}{s^{3} } \frac{T^{2}z(z+1)}{(z-1)^{3} } Parabolic
(kT)^{2}
t^{n} \frac{n!}{s^{n+1} } \underset{a\rightarrow 0}{\lim } (-1)^{n} \frac{d^{n} }{da^{n} }(\frac{z}{z-e^{-aT} } ) Exponential
(kT)^{n}
e^{-aT} \frac{1}{s+a }

 

(\frac{z}{z-e^{-aT} } )

 

Natural exponential decay

 

e^{-akT}
1-e^{-aT} \frac{1}{s(s+a) } \frac{z(1-e^{-aT})}{(z-e^{-aT})(z-1) }  Natural exponential growth
1- e^{-akT}
\sin  (at) \frac{a}{s^{2} +a^{2}}  \frac{z\sin (\omega T)}{z^{2}-2z\cos (\omega T)+1 } Sine wave, no decay
\sin  (akT)
\cos (at) \frac{s}{s^{2} +a^{2} } \frac{z\left[z-\cos(\omega T)\right] }{z^{2}-2z\cos (\omega T)+1 } Cosine wave, no  decay
\cos (akT)
e^{aT} \sin (bt) \frac{b}{(s-a)^{2} +b^{2} } \frac{ze^{-aT} \sin (\omega T)}{z^{2}-2ze^{-aT}\cos (\omega T)+e^{-aT} } Sine wave with exponential decay/growth
e^{akT} \sin (bkT)
e^{aT} \cos (bt) \frac{s-a}{(s-a)^{2} +b^{2} } \frac{z^2 – ze ^{-aT}  \cos (wT)}{z^2 – 2ze^{-aT }\cos (wT) + e^{-aT}} Cosine wave with exponential decay/growth
e^{akT} \cos (bkT)
t.e^{at} \frac{1}{(s-a)^{2}} \frac{Te^{-aT} z}{(e^{-aT}z – 1)^2} Ramp with exponential decay,growth
kt.e^{aKT}
e^{at} f(t) F(s − a) F(e^{-aT}z) Frequency-Shift Theorem.
e^{aKt} f(Kt)
f(t-nT) e^{−snT} F(s) z^{-n}F(z) Time-Shift Theorem (a delay)
f(Kt-nT)
\frac{df(t)}{dt} sF(s) (1-z^{-1} )F(z)  Differentiation Theorem/Difference Theorem
f(Kt) – f(KT-T)
\int_{0}^{t}{f(\tau )d\tau } \frac{F(s)}{s} (\frac{z}{z-1}) F(z) Integration Theorem/ Accumulation Theorem
f(Kt)+y(KT-T)
f(\infty ) \underset{s\rightarrow 0}{\lim} \ sF(s) \underset{z\rightarrow 1}{\lim} \ (1-z^{-1} ) F(z) Final Value Theorem
f(0) \underset{s\rightarrow \infty }{\lim} \ s F(s) \underset{z\rightarrow \infty }{\lim}   F(z)  Initial Value Theorem
f(t)g(t) F(s) \otimesG(s) F(z) \otimesG(z) Convolution  Theorem*
f(kT)g(kT)
\int\limits_{0}^{t}{}\begin{matrix} f(t-\tau  )g(\tau )d(\tau )= \\f(t)\otimes g(t) \end{matrix} F(s) G(s) F(z) G(z) Convolution  Theorem*
F(kt) \otimesg(kt)
*Note that the symbol \otimes denotes convolution.

Related Answered Questions