Question 9.5: Derive the stiffness matrix in global coordinates for a thre...

Derive the stiffness matrix in global coordinates for a three-node triangular membrane element for plane stress analysis. Assume that the elastic modulus, E, and thickness, t, are constant throughout, and that the displacement functions are

u(x, y) =α_{1} + α_{2}x + α_{3}y
υ(x, y) = α_{4} + α_{5}x + α_{6}y

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With reference to §9.9 and with respect to the node labelling shown in Fig. 9.41, matrix [A] will be given as:

[A]=\begin{bmatrix} 1 & x_{1} & y_{1} & 0 & 0 & 0 \\ 1 & x_{2} & y_{2} & 0 & 0 & 0 \\1 & x_{3} & y_{3} & 0 & 0 & 0\\0 & 0 & 0 & 1 & x_{1} & y_{1} \\0 & 0 & 0 & 1 & x_{2} & y_{2} \\0 & 0 & 0 & 1 & x_{3} & y_{3}\end{bmatrix} =\begin{bmatrix} A_{\alpha \alpha } & A_{\alpha \beta } \\ A_{\beta \alpha } & A_{\beta \alpha } \end{bmatrix}

Then [A]^{-1}=\begin{bmatrix} [A_{\alpha \alpha }]^{-1} & 0 \\ 0 & [A_{\beta \beta }]^{-1} \end{bmatrix}   where  [A_{\alpha \alpha }]^{-1}= [A_{\beta \beta }]^{-1}  in this case

Obtaining the inverse of the partition

adj [A_{\alpha \alpha }]=[C_{\alpha \alpha }]^{T}=\begin{bmatrix} x_{2}y_{3}-x_{3}y_{2} & y_{2}-y_{3} & x_{3}-x_{2}\\ x_{3}y_{1}-x_{1}y_{3} & y_{3}-y_{1} & x_{1}-x_{3} \\x_{1}y_{2}-x_{2}y_{1} & y_{1}-y_{2} & x_{2}-x_{1}\end{bmatrix} ^{T}

=\begin{bmatrix} x_{2}y_{3}-x_{3}y_{2} & x_{3}y_{1}-x_{1}y_{3} & x_{1}y_{2}-x_{2}y_{1} \\ y_{2}-y_{3} & y_{3}-y_{1} &y_{1}-y_{2}\\x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}\end{bmatrix}

 and det [A_{\alpha \alpha }]=( x_{2}y_{3}-x_{3}y_{2})-(x_{1}y_{3}-x_{3}y_{1})+(x_{1}y_{2}-x_{2}y_{1})
=x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})
=2 \times  area of element = 2a ,(see following derivation )

Then [A_{\alpha \alpha }]^{-1}=\frac{adj [A_{\alpha \alpha }]}{det [A_{\alpha \alpha }]}=\frac{1}{2a} \begin{bmatrix} x_{2}y_{3}-x_{3}y_{2} & x_{3}y_{1}-x_{1}y_{3} & x_{1}y_{2}-x_{2}y_{1} \\ y_{2}-y_{3} & y_{3}-y_{1} &y_{1}-y_{2}\\x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}\end{bmatrix}

Hence,  [A]^{-1}=\frac{1}{2a} \begin{bmatrix} x_{2}y_{3}-x_{3}y_{2} & x_{3}y_{1}-x_{1}y_{3} & x_{1}y_{2}-x_{2}y_{1} &0&0&0\\ y_{2}-y_{3} & y_{3}-y_{1} &y_{1}-y_{2}&0&0&0\\x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}&0&0&0 \\ 0&0&0&x_{2}y_{3}-x_{3}y_{2} & x_{3}y_{1}-x_{1}y_{3} & x_{1}y_{2}-x_{2}y_{1} \\0&0&0& y_{2}-y_{3} & y_{3}-y_{1} &y_{1}-y_{2}\\ 0&0&0&x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}\end{bmatrix}

Area of element

With reference to Fig 9.42, area of triangular element ,

a = area of enclosing rectangle – (area of triangles b,c and d)

=(x_{2}-x_{1})(y_{3}-y_{1})-(1/2)(x_{2}-x_{1})(y_{2}-y_{1})-(1/2)(x_{2}-x_{3})(y_{3}-y_{2})-(1/2)(x_{3}-x_{1})(y_{3}-y_{1})
=x_{2}y_{3}-x_{2}y_{1}-x_{1}y_{3}+x_{1}y_{1}-(1/2)[x_{2}y_{2}-x_{2}y_{1}-x_{1}y_{2}+x_{1}y_{1})+(x_{2}y_{3}-x_{2}y_{2}-x_{3}y_{3}+x_{3}y_{2})+(x_{3}y_{3}-x_{3}y_{1}-x_{1}y_{3}+x_{1}y_{1})]
=(1/2)(x_{2}y_{3}-x_{2}y_{1}-x_{1}y_{3}+x_{1}y_{2}-x_{3}y_{2}+x_{3}y_{1})
=(1/2)[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]

§9.9 gives matrix [B] as

[B]=\begin{bmatrix} 0 & 1 &0&0&0&0 \\ 0 & 0 &0&0&0&1 \\0 & 0 &1&0&1&0 \end{bmatrix} [A]^{-1}

Substituting for [A]^{-1} from above and evaluating the product gives

[B]=\frac{1}{2a}\begin{bmatrix} y_{2}-y_{3} & y_{3}-y_{1} & y_{1}-y_{2}&0&0&0 \\ 0 & 0 &0 & x_{3}-x_{2}& x_{1}-x_{3}& x_{2}-x_{1} \\ x_{3}-x_{2}& x_{1}-x_{3}& x_-{2}-x_{1} & y_{2}-y_{3} & y_{3}-y_{1} & y_{1}-y_{2} \end{bmatrix}

The required element stiffness matrix can now be found by substituting into the relatio

[k] = at [B]^{T}[D][B]

=\frac{at}{2a} \begin{bmatrix} y_{23} & 0 & x_{32} \\y_{31} & 0 & x_{13}\\y_{12} & 0 & x_{21}\\ 0 & x_{32}&y_{23}\\0 & x_{13}&y_{31} \\0 & x_{21}&y_{12} \end{bmatrix} \frac{E}{1-\nu ^{2}} \begin{bmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\0&0&(1-\nu )/2 \end{bmatrix}\frac{1}{2a} \begin{bmatrix} y_{23} & y_{31}& y_{12} &0&0&0\\ 0 & 0&0& x_{32}& x_{13}& x_{21}\\x_{32}& x_{13}& x_{21} &y_{23} & y_{31}& y_{12} \end{bmatrix}

where the abbreviation y_{23} denotes y_{2} – y_{3}, etc.
Choosing to evaluate the product [D][B] first, gives

[k]=\frac{Et}{4a(1-\nu ^{2})}\begin{bmatrix} y_{23} & 0 & x_{32} \\y_{31} & 0 & x_{13}\\y_{12} & 0 & x_{21}\\ 0 & x_{32}&y_{23}\\0 & x_{13}&y_{31} \\0 & x_{21}&y_{12} \end{bmatrix} \begin{bmatrix} y_{23} & y_{31}& y_{12} &\nu x_{32} &\nu x_{13}&\nu x_{21}\\\nu y_{23} &\nu y_{31}& \nu y_{12}& x_{32}& x_{13}& x_{21}\\\frac{(1-\nu )}{2} x_{32}& \frac{(1-\nu )}{2}x_{13}& \frac{(1-\nu )}{2}x_{21} &\frac{(1-\nu )}{2}y_{23} & \frac{(1-\nu )}{2}y_{31}&\frac{(1-\nu )}{2} y_{12} \end{bmatrix}

Completing the matrix multiplication, reversing the sequence of some of the coordinates so that all subscripts are in descending order, gives the required element stiffness matrix as

[k]=\frac{Et}{4a(1-\nu ^{2})}\begin{bmatrix} y_{32}^{2}+x_{32}^{2}(1-\nu )/2 & & & & \\ -y_{32}y_{31}-x_{31}x_{32}(1-\nu )/2 & y_{31}^{2}+x_{31}^{2}(1-\nu )/2 & & & \\y_{21}y_{32}+x_{21}x_{32}(1-\nu )/2 & -y_{21}y_{31}-x_{21}x_{31}(1-\nu )/2& y_{21}^{2}+x_{21}^{2}(1-\nu )/2& & \\-\nu x_{32}y_{32}-y_{32}x_{32}(1-\nu )/2 & \nu x_{32}y_{31}+y_{32}x_{31}(1-\nu )/2 &- \nu x_{32}y_{21}-y_{32}x_{21}(1-\nu )/2 & x_{32}^{2}+y_{32}^{2}(1-\nu )/2& \\ \nu x_{31}y_{32}+y_{31}x_{32}(1-\nu )/2 & -\nu x_{31}y_{31}-y_{31}x_{31}(1-\nu )/2 & \nu x_{31}y_{21}+y_{31}x_{21}(1-\nu )/2 & – x_{31}x_{32}-y_{31}y_{32}(1-\nu )/2 & x_{31}^{2}+y_{31}^{2}(1-\nu )/2\\-\nu x_{21}y_{32}-y_{21}x_{32}(1-\nu )/2 & \nu x_{21}y_{31}+y_{21}x_{31}(1-\nu )/2 & -\nu x_{21}y_{21}-y_{21}x_{21}(1-\nu )/2 & x_{21}x_{32}+y_{21}y_{32}(1-\nu )/2 & – x_{21}x_{31}-y_{21}y_{31}(1-\nu )/2 & x_{21}^{2}+y_{21}^{2}(1-\nu )/2\end{bmatrix}
9.41
9.42

Related Answered Questions