Question A.4.1: Evaluate the line integral of f(x, y) = x^2 + y^2 along the ...
Evaluate the line integral of f(x, y) = x^{2} + y^{2} along the three paths shown in Fig. A.6.

Learn more on how we answer questions.
Along path 1 we have
\int_{c_{1}}(x^{2} + y^{2})dl = (\int_{0}^{y_{0}} y^{2} dy)\hat{y} + (\int_{0}^{x_{0}} (x^{2} + y_{0}^{3} )dx)\hat{x}
= x_{0} (\frac{x_{0}^{2} }{3}+y_{0}^{2} )\hat{x} +\frac{y_{0}^{2} }{3} \hat{y}.
To integrate along path 2 we need to relate y and x. Along this path
y = \frac{y_{0}}{x_{0}} x
and
dy = \frac{y_{0}}{x_{0}} dx.
Therefore dl = dx \hat{x} + (y_{0} /x_{0}) dx\hat{y}. The integration reduces to
\int_{c_{2}}(x^{2} + y^{2})dl = (\int_{0}^{x_{0}} (x^{2} + (\frac{y_{0}}{x_{0}} x)^{2}) (dx\hat{x} +\frac{y_{0}}{x_{0}} dx\hat{y})
= (1 + (\frac{y_{0}}{x_{0}})^{2})\frac{x_{0}^{3}}{3}\hat{x} + (1 + (\frac{y_{0}}{x_{0}})^{2}) \frac{y_{0} x_{0}^{2}}{3} \hat{y}.
Last, along path 3 we have
\int_{c_{2}}(x^{2} + y^{2})dl = (\int_{0}^{x_{0}} x^{2} dx)\hat{x} + (\int_{0}^{y_{0}} (x_{0}^{2} +y^{2}) dy)\hat{y}
= \frac{x_{0}^{3} }{3}\hat{x} + y_{0} (x_{0}^{2} +\frac{y_{0}^{2} }{3} ) \hat{y}.