Question A.5.1: Verify Stokes’ theorem for the vector field A(x, y) = (2x - ...

Verify Stokes’ theorem for the vector field A(x, y) = (2x – y)\hat{x} – yz^{2}\hat{y} + y^{2}z\hat{z} where S is the half-surface of the sphere x^{2} + y^{2} + z^{2} = a^{2} and C is its bounding curve in the x-y plane (Fig. A.10).

A10
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, we evaluate \int_{s} (∇×A) · \hat{n} ds. It is easy to check that

(∇ × A) = \hat{z}.

In this case, the open surface S is defined by x^{2} + y^{2} + z^{2} = a^{2} with z ≥ 0. The unit vector \hat{n} on S is given by

\hat{n} = \frac{x\hat{x} +y\hat{y} +z\hat{z}}{a}.

Therefore,

(∇ × A)  ⋅ \hat{n}  =\frac{z}{a}.

We want to evaluate \int_{s} (z/a) ds over the hemisphere. We use spherical coordinates in which

z = r cos(θ),

and

ds = r^{2} sin(θ) dθ dΦ.

On S we have r = a and, therefore,

\int_{s}\frac{z}{a} ds = \int_{0}^{2π} \int_{0}^{π/2} a^{2} cos(θ) sin(θ) dθ dΦ
= a^{2}π.            (A.43)

Next, we evaluate \oint_{c} A· dl using cylindrical coordinates. We transform A(x, y) into cylindrical coordinates using Table A.1. This gives

Table A.1 Coordinate transformations for Cartesian coordinates

Spherical Cylindrical Cartesian
= sin(θ) cos(Φ)\hat{r}_{s} +cos(θ)cos(Φ)\hat{θ} – sin(Φ)\hat{Φ}  = cos(Φ)\hat{r}_{c} – sin(Φ)\hat{Φ} \hat{x}
= sin(θ) sin(Φ)\hat{r}_{s} +cos(θ)sin(Φ)\hat{θ} + cos(Φ)\hat{Φ} = sin(Φ)\hat{r}_{c} + cos(Φ)\hat{Φ} \hat{y}
= cos(θ)\hat{r} -sin(θ)\hat{θ} = \hat{z} \hat{z}
= r_{s} sin(θ)cos(Φ) = r_{c}cos(Φ) x
= r_{s} sin(θ)sin(Φ) = r_{c}sin(Φ) y
= r_{s}cos(θ) = z z
= A_{r_{s}}sin(θ)cos(Φ) +A_{θ}cos(θ)cos(Φ) -A_{Φ}sin(Φ) = A_{r_{c}}cos(Φ) -A_{Φ}sin(Φ) A_{x}
= A_{r_{s}}sin(θ)sin(Φ) +A_{θ}cos(θ)sin(Φ) + A_{Φ}cos(Φ) = A_{r_{c}}sin(Φ) -A_{Φ}cos(Φ) A_{y}
= A_{r_{s}}cos(θ) – A_{θ}sin(θ) = A_{z} A_{z}

A(r,Φ) = (2r cos(Φ) – r sin(Φ))(cos(Φ)\hat{r} – sin(Φ)\hat{Φ})

r sin(Φ)z^{2}(sin(Φ)\hat{r} + cos(Φ)\hat{Φ})+r^{2} sin^{2}(Φ)z\hat{z}.

On the curve C, r = a, z = 0, and dl = a dΦ\hat{Φ}. Therefore,

A(r, Φ) · dl = (-2a^{2} cos(Φ) sin(Φ)+a^{2} sin^{2}(Φ))

and

\oint_{c} A · dl = \int_{0}^{2π}(-2a^{2} cos(Φ) sin(Φ)+a^{2} sin^{2}(Φ))

= a^{2}π.          (A.44)

Notice that Eq. (A.44) equals Eq. (A.43), which verifies Stokes’ theorem.

Related Answered Questions