Question 9.5: The return line from a thermosyphon reboiler consists of 10-...

The return line from a thermosyphon reboiler consists of 10-in. schedule 40 pipe with an ID of 10.02 in. (0.835 ft). The total mass flow rate in the line is 300,000 lbm/h, of which 60,000 lbm/h (20%) is vapor and 240,000 lbm/h is liquid. Physical properties of the vapor and liquid fractions are given in the following table:

Property Liquid Vapor
μ (cp) 0.177 0.00885
ρ (lbm/ft³) 38.94 0.4787
σ (dyne/cm) 11.4

Calculate the friction loss per unit length in the line using:
(a) The Lockhart–Martinelli correlation.
(b) The Chisholm correlation.
(c) The Friedel correlation.
(d) The MSH correlation.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The friction loss for the liquid fraction flowing alone in the pipe is calculated first.

G_{L}=\frac{\dot{m}_{L}}{(\pi / 4) D_{i}^{2}}=\frac{240,000}{(\pi / 4)(0.835)^{2}}=438,277  lbm / h \cdot ft ^{2}

R e_{L}=\frac{D_{i} G_{L}}{\mu_{L}}=\frac{0.835  \times  438,277}{0.177  \times  2.419}=854,724

s_{L}=\rho_{L} / \rho_{\text {water }}=38.94 / 62.43=0.6237

Equation (4.8) is used to calculate the friction factor:

f=0.3673  Re^{-0.2314}        (4.8)

f_{L} = 0.3673  Re_{L}^{-0.2314}=0.3673(854,724)^{-0.2314}=0.01557

The friction loss per unit length is given by:

\left(\frac{\Delta P_{f}}{L}\right)_{L}=\frac{f_{L} G_{L}^{2}}{7.50  \times  10^{12} D_{i} s_{L} \phi_{L}}=\frac{0.01557(438,277)^{2}}{7.5  \times  10^{12}  \times  0.835  \times  0.6237  \times  1.0}

\left(\frac{\Delta P_{f}}{L}\right)_{L}=0.000766  psi / ft

Since the flow is turbulent, the Lockhart–Martinelli parameter is calculated using Equation (9.37).

X_{ tt } \cong\left(\frac{1-x}{x}\right)^{0.9}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{0.5}\left(\frac{\mu_{L}}{\mu_{V}}\right)^{0.1}

= (0.8 / 0.2)^{0.9}(0.4787 / 38.94)^{0.5}(0.177 / 0.00885)^{0.1}

X_{ tt } \cong 0.521

For comparison, the reader can verify that using Equation (9.36) with n = 0.2314 to calculate X_{tt} gives a value of 0.534, which differs from the value calculated above by less than 3%. For turbulent flow, the two-phase multiplier is given by Equation (9.28):

\phi_{L}^{2}=1+\frac{20}{X_{tt}}+\frac{1}{X_{tt}^{2}}  =  1+\frac{20}{0.521}+\frac{1}{(0.521)^{2}}=43.07

X = \left(\frac{1  –  x}{x}\right)^{(2  –  n)/2} (\mu_{L}/\mu_{V})^{n/2} (\rho_{V}/\rho_{L})^{0.5}                (9.36)

The two-phase friction loss is then:

\left(\frac{\Delta P_{f}}{L}\right)_{ tp }=\phi_{ L }^{2}\left(\frac{\Delta P_{f}}{L}\right)_{L}=43.07 \times 0.000766=0.033  psi / ft

(b) For the Chisholm method, the friction loss is calculated assuming the total flow has the properties of the liquid. Thus,

G=\frac{\dot{m}}{(\pi / 4) D_{i}^{2}}=\frac{300,000}{(\pi / 4)(0.835)^{2}}=547,846  lbm / h \cdot ft ^{2}

\operatorname{Re}_{L O}=\frac{D_{i} G}{\mu_{ L }}=\frac{0.835(547,846)}{0.177  \times  2.419}=1,068,405

f_{L O}=0.3673 R e_{L O}^{-0.2314} =0.3673(1,068,405)^{-0.2314}=0.01479

\left(\frac{\Delta P_{f}}{L}\right)_{L O}=\frac{f_{L O} G^{2}}{7.50  \times  10^{12} D_{i} s_{L} \phi_{L}}=\frac{0.01479(547,846)^{2}}{7.5  \times  10^{12}  \times  0.835  \times  0.6237  \times  1.0}

\left(\frac{\Delta P _{ f }}{ L }\right)_{L O}=0.001136  psi / ft

Since the flow is turbulent, the Chisholm parameter is calculated using Equation (9.42) with n =0.2314.

Y=\left(\rho_{L} / \rho_{V}\right)^{0.5}\left(\mu_{V} / \mu_{L}\right)^{n / 2} = (38.94 / 0.4787)^{0.5}(0.00885 / 0.177)^{0.1157}

Y \cong 6.38

Since Y < 9.5, Equation (9.44) gives:

\begin{matrix}B &=& 1500 / G^{0.5} \quad \quad (0<Y<9.5) \\ &= &14,250/(YG^{0.5}) \quad \quad (9.5<Y<28)  &&&&     (9.44)\\ &=&399,000/(Y^2 G^{0.5}) \quad \quad (Y>28)\end{matrix}

B  = 1500/G^{0.5} = 1500 /(547,846)^{0.5} \cong 2.027

The two-phase multiplier is calculated using Equation (9.43):

\phi_{L O}^{2}=1+\left(Y^{2}-1\right)\left\{B[x(1-x)]^{(2-n) / 2}+x^{2-n}\right\}

= 1+\left[(6.38)^{2}-1\right]\left\{2.027[0.2(1-0.2)]^{0.8843}+(0.2)^{1.7686}\right\}

\phi_{L O}^{2} \cong 19.22

Finally, the two-phase friction loss is given by Equation (9.38):

\left(\frac{\Delta P_{f}}{L}\right)_{t p}=\phi_{L O}^{2}\left(\frac{\Delta P_{f}}{L}\right)_{L O}

 = 19.22 \times 0.001136 \cong 0.022  psi / ft

(c) For the Friedel method, we need only recalculate \phi_{L O}^{2} according to Equation (9.45). The parameters E, F, H, Fr , and We are first calculated using Equations (9.47)–(9.52).

\phi_{L O}^{2} = E + \frac{3.24 FH}{Fr^{0.045} We^{0.035}}                       (9.45)

F=x^{0.78} (1-x)^{0.24}           (9.47)

E=(1-x)^{2}+x^{2}\left(\mu_{V} / \mu_{L}\right)^{n}\left(\rho_{L} / \rho_{V}\right)

(0.8)^{2}+(0.2)^{2}(0.00885 / 0.177)^{0.2314}(38.94 / 0.4787)

E = 2.2668

F=x^{0.78}(1-x)^{0.24}=(0.2)^{0.78}(0.8)^{0.24}=0.2701

H=\left(\rho_{L} / \rho_{V}\right)^{0.91}\left(\mu_{V} / \mu_{L}\right)^{0.19}\left(1-\mu_{V} / \mu_{L}\right)^{0.7}

=(38.94 / 0.4787)^{0.91}(0.00885 / 0.177)^{0.19}(1-0.00885 / 0.177)^{0.7}

H = 29.896

\rho_{t p}=\left[x / \rho_{V}+(1-x) / \rho_{L}\right]^{-1}=[0.2 / 0.4787+0.8 / 38.94]^{-1}

\rho_{t p}=2.2813  lbm / ft ^{3}

F r=\frac{G^{2}}{g D_{i} \rho_{t p}^{2}}=\frac{(547,846)^{2}}{4.17 \times 10^{8} \times 0.835(2.2813)^{2}}=165.63

The surface tension must be converted to English units for consistency.

\sigma=11.4  dyne / cm  \times  6.8523  \times  10^{-5}\left(\frac{ lbf / ft }{ dyne / cm }\right)=7.812  \times  10^{-4} lbf / ft

W e=\frac{G^{2} D_{i}}{g_{c} \rho_{ tp } \sigma}=\frac{(547,846)^{2}  \times  0.835}{4.17  \times  10^{8}  \times  2.2813  \times  7.812  \times  10^{-4}}

W e=337,227

\phi_{L O}^{2}=E+\frac{3.24 FH }{ Fr ^{0.045} We^{0.035}}

=2.2668+\frac{3.24  \times  0.2701  \times  29.896}{(165.63)^{0.045}(337,227)^{0.035}}

\phi_{L O}^{2}=15.58

The two-phase friction loss is calculated using the value of \left(\Delta P_{f} / L\right)_{L O} found in part (b):

\left(\frac{\Delta P_{f}}{L}\right)_{t p}=\phi_{L O}^{2}\left(\frac{\Delta P_{f}}{L}\right)_{L O}=15.58  \times  0.001136 \cong 0.018  psi / ft

(d) For the MSH method, the two-phase multiplier is calculated using Equation (9.53).

\phi_{L O}^{2}=Y^{2} x^{3}+\left[1+2 x\left(Y^{2}-1\right)\right](1-x)^{1 / 3}

(6.38)^{2}(0.2)^{3}+\left[1+2 \times 0.2\left((6.38)^{2}-1\right)\right](1-0.2)^{1 / 3}

\phi_{L O}^{2} \cong 16.00

The two-phase friction loss is again given by Equation (9.38):

\left(\frac{\Delta P_{f}}{L}\right)_{t p}=\phi_{L O}^{2}\left(\frac{\Delta P_{f}}{L}\right)_{L O}=16.00 \times 0.001136 \cong 0.018  psi / ft

The predictions of the Friedel and MSH correlations are in very close agreement, while the Chisholm method predicts a value about 20% higher and the Lockhart–Martinelli prediction is about 80% higher.

Related Answered Questions