Question 9.6: Calculate the void fraction and two-phase density for the re...

Calculate the void fraction and two-phase density for the reboiler return line of Example 9.5 using:
(a) The homogeneous flow model.
(b) The Lockhart–Martinelli correlation.
(c) The Chisholm correlation.
(d) The CISE correlation

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For the homogeneous flow model, the void fraction is given by Equation (9.60):

\epsilon_{V}=\frac{x}{x  +  (1  –  x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2  +  0.8(0.4787 / 38.94)}

 

\epsilon_{ V }=0.9531

The two-phase density can be calculated using either Equation (9.54) or (9.51). The latter was used in Example 9.5 to obtain \rho_{ tp } = 2.2813 lbm/ft³. Using Equation (9.54) we obtain

\rho_{tp} = [x/ \rho_{V}  +  (1  –  x)/\rho_{L}]^{-1}                  (9.51)

\rho_{ tp }=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.9531 \times 0.4787+(1-0.9531) \times 38.94

 

\rho_{t p}=2.2825 \cong 2.28 lbm / ft ^{3}

The difference between the two values of \rho_{t p} is due to round-off error in the value of \epsilon_{V}, and is negligible in the present context.
(b) A value of \phi_{L}^{2} = 43.07 was calculated in Example 9.5, giving \phi_{L}= 6.5628. The void fraction is computed from Equation (9.61):

\epsilon_{V}=\left(\phi_{L}-1\right) / \phi_{L}=(6.5628-1) / 6.5628=0.8476

The two-phase density is calculated using Equation (9.62):

\rho_{t p}=\frac{\rho_{L}+\left(\phi_{L}-1\right) \rho_{V}}{\phi_{L}}=\frac{38.94+(6.5628-1) \times 0.4787}{6.5628}

 

\rho_{ tp }=6.3392 \cong 6.34  lbm / ft ^{3}

(c) From Example 9.5, the Lockhart–Martinelli parameter is X_{ tt} = 0.521 < 1. Therefore, Equation (9.63) gives:

S R=\left(\rho_{L} / \rho_{V}\right)^{0.25}=(38.94 / 0.4787)^{0.25}=3.0032

Substitution into Equation (9.59) gives the void fraction:

\epsilon_{V}=\frac{x}{x+S R(1-x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2+3.0032 \times 0.8 \times 0.4787 / 38.94}

 

\epsilon_{V}=0.8713

The two-phase density is obtained from Equation (9.54).

\rho_{t p}=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.8713 \times 0.4787+(1-0.8713) \times 38.94

 

\rho_{ tp }=5.4287 \cong 5.43  lbm / ft ^{3}

(d) The following values are obtained from Example 9.5:

D_{i}=0.835  ft

 

\sigma=7.812 \times 10^{-4}  lbf / ft

 

G=547,846  lbm / h \cdot ft ^{2}

 

\operatorname{Re}_{ LO }=1,068,405

The Weber number is calculated as follows:

W e_{L O}=\frac{G^{2} D_{i}}{g_{c} \rho_{L} \sigma}=\frac{(547,846)^{2} \times 0.835}{4.17 \times 10^{8} \times 38.94 \times 7.812 \times 10^{-4}}=19,756

The parameters in the CISE correlation are calculated using Equations (9.65) to (9.67). From part (a), the homogeneous void
fraction is \left(\epsilon_{V}\right)_{\text {hom }}= 0.9531.

y=\frac{\left(\epsilon_{V}\right)_{\text {hom }}}{1-\left(\epsilon_{V}\right)_{\text {hom }}}=\frac{0.9531}{1-0.9531}=20.322

 

E_{1}=1.578 R e_{L O}^{-0.19}\left(\rho_{L} / \rho_{V}\right)^{0.22}=1.578(1,068,405)^{-0.19}(38.94 / 0.4787)^{0.22}

 

E_{1}=0.2973

 

E_{2}=0.0273 W e_{L O} R e_{L O}^{-0.51}\left(\rho_{L} / \rho_{V}\right)^{-0.08}

 

=0.0273 \times 19,756(1,068,405)^{-0.51}(38.94 / 0.4787)^{-0.08}

 

E_{2}=0.3194

The slip ratio is calculated from Equation (9.64):

S R=1+E_{1}\left[\left(\frac{\gamma}{1+\gamma E_{2}}\right)+\gamma E_{2}\right]^{0.5}

 

=1+0.2973\left[\frac{20.322}{1+20.322 \times 0.3194}+20.322 \times 0.3194\right]^{0.5}

SR = 1.9013

The void fraction is calculated using Equation (9.59):

\epsilon_{V}=\frac{x}{x+S R(1-x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2+1.9013 \times 0.8 \times 0.4787 / 38.94}

 

\epsilon_{V}=0.9145

Finally, the two-phase density is calculated using Equation (9.54).

\rho_{t p}=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.9145 \times 0.4787+(1-0.9145) \times 38.94

 

\rho_{ t p}=3.7671 \cong 3.77  lbm / ft ^{3}

Notice that while the void fractions predicted by the four methods are within about 12% of one another, the two-phase densities differ by large percentages

Related Answered Questions