Question 9.10: The pool boiling of Example 9.1 takes place with a tube-wall...

The pool boiling of Example 9.1 takes place with a tube-wall temperature of 537.5 K, at which film boiling occurs. Estimate the heat-transfer coefficient for this situation. In addition to the data given in Example 9.1, the heat capacity and thermal conductivity of the vapor are C_{P, V} = 2360 J/kg · K and k_{V} = 0.011 W/m · K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For pool film boiling on a horizontal tube, the Bromley equation is applicable. The following data are obtained from Example 9.1:

\rho_{L}=567  kg / m ^{3}\quad \quad\mu_{V}=7.11  \times  10^{-6}  kg / m \cdot s

 

\rho_{V}=18.09  kg / m ^{3}\quad \quad D_{o}=1 \text { in. }=0.0254  m

 

\lambda=272,000  J / kg \quad \quad T_{\text {Sat }}=437.5  K

The temperature difference is:

\Delta T_{e}=T_{w}-T_{s a t}=537.5-437.5=100 K

The heat-transfer coefficient for film boiling is obtained by substituting into Equation (9.101).

\frac{h_{fb} D_{o}}{k_{V}}=0.62\left[\frac{g \rho_{V}\left(\rho_{L}  –  \rho_{V}\right) D_{o}^{3}\left(\lambda  +  0.76 C_{P, V} \Delta T_{e}\right)}{k_{V} \mu_{V} \Delta T_{e}}\right]^{0.25}

 

=0.62\left[\frac{9.81  \times  18.09(567  –  18.09)(0.0254)^{3}(272,000  +  0.76  \times  2360  \times  100)}{0.011  \times  7.11  \times  10^{-6}  \times  100}\right]^{0.25}

 

\frac{h_{f b} D_{o}}{k_{V}}=341.57

 

h_{f b}=341.57  \times  k_{V} / D_{o}=341.57  \times  0.011 / 0.0254

 

h_{f b}=148  W / m ^{2} \cdot K

The radiative heat-transfer coefficient is estimated using Equation (9.103). Assuming an emissivity of 0.8 for the tube wall, we have

h_{ r }=\frac{\epsilon \sigma_{S B}\left(T_{w}^{4}  –  T_{s a t}^{4}\right)}{T_{w}  –  T_{s a t}}=\frac{0.8  \times  5.67  \times  10^{-8}\left[(537.5)^{4}-(437.5)^{4}\right]}{537.5  –  437.5}

 

h_{ r }=21  W / m ^{2} \cdot K

Since h_{ r } < h_{f b}, Equation (9.104) is used to obtain the effective heat-transfer coefficient:

h_{ t }=h_{f b}+0.75  h_{ r }=148+0.75  \times  21 \cong 164  W / m ^{2} \cdot K

This value is one to two orders of magnitude lower than the heat-transfer coefficient for nucleate boiling calculated in Example 9.1.

Related Answered Questions