Question 5.22: Air enters a convergent nozzle from a reservoir at 2200 kPa ...

Air enters a convergent nozzle from a reservoir at 2200 kPa and 100°C. If the exit area is 3.25 cm², what is the maximum mass flow rate that this nozzle can handle ? Assume the process to be isentropic and that the air behaves as an ideal gas.                                                                                                                                                                                                             (AMIE Winter, 1998) 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For maximum mass flow rate, and γ = 1.4, the pressure at the exit will be critical,

p^{*}  =   (\frac{2}{γ   +   1})^{[γ /  (γ  –  1)]}

p_{0}  =     (\frac{2}{1.4   +   1})^{(1.4  /  1.4.1)}    ×    p_{0}   =  0.528 × 2200

and                          T^{*}  =  T_{0}   (\frac{p^{*} }{p_{0}}) ^{[ (γ  –  1) /  γ]}

= (100 + 273) (\frac{1161.6}{2200})^{(0.4  /  1.4)}   = 310.78 K

Sonic velocity,                                      C^{*}  =   \sqrt{γ R  T^{*} }  =   \sqrt{1.4    ×    287  ×   310.78}      =  353.37 m/s

ρ^{*}  =   \frac{p^{*}}{R  T^{*} }  =  \frac{1161.6}{0.287    ×   310.78}   =  13.02 kg/m³

  \dot{m}    =  ρ^{*} A_{e} C^{*}   =   13.02    ×  \frac{3.25 }{10^{4}}    ×    353.37    =     1.495 kg/s

522

Related Answered Questions