Question 11.6: Find the minimum required thickness tmin for a steel pipe co...

Find the minimum required thickness t_{\min} for a steel pipe column of length L = 3.6 m and outer diameter d = 160 mm supporting an axial load P = 240 kN (Fig. 11-38). The column is fixed at the base and free at the top. (Use E = 200 GPa and \sigma_{Y} = 250 MPa.)

11.38
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We will use the AISC formulas (Eqs. 11-79 through 11-82) when analyzing this column. Since the column has fixed-free end conditions, the effective length is

n_{1}=\frac{5}{3}+\frac{3(KL/r)}{8(KL/r)_{c}}-\frac{(KL/r)^{3}}{8(KL/r)^{3}_{c}}                  \frac{KL}{r}\leq\left(\frac{KL}{r}\right) _{c}            (11-79)

\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{(KL/r)^{2}_{c}}{2n_{2}(KL/r)^{2}}              \frac{KL}{r}\geq\left(\frac{KL}{r}\right)_{c}                                  (11-82)

L_{e} = KL = 2(3.6 m) = 7.2 m

Also, the critical slenderness ratio (Eq. 11-76) is

\left(\frac{KL}{r}\right)_{c}=\sqrt{\frac{2\pi^{2}E}{\sigma_{Y}}}=\sqrt{\frac{2\pi^{2}(200  GPa)}{250  MPa}}=125.7                  (b)

First trial. To determine the required thickness of the column, we will use a trial-and-error method. Let us start by assuming a trial value t = 7.0 mm. Then the moment of inertia of the cross-sectional area is

I=\frac{\pi}{64}\left[d^{4}-(d-2t)^{4}\right]=\frac{\pi}{64}\left[(160  mm)^{4}-(146  mm)^{4}\right]=9.866\times10^{6}  mm^{4}

Also, the cross-sectional area and radius of gyration are

A=\frac{\pi}{4}\left[d^{2}-(d-2t)^{2}\right]=\frac{\pi}{4}\left[(160  mm)^{2}-(146  mm)^{2}\right]=3365  mm^{2}

 

r=\sqrt{\frac{I}{A}}=\sqrt{\frac{9.866\times10^{6}  mm^{4}}{3365  mm^{2}}}=54.15  mm

Therefore, the slenderness ratio of the column is

\frac{KL}{r}=\frac{2(3.6  m)}{54.15  mm}=133.0

Since this ratio is larger than the critical slenderness ratio (Eq. b), we obtain the factor of safety and the allowable stress from Eqs. (11-80) and (11-82):

n_{2}=\frac{23}{12}\approx1.92                \frac{KL}{r}\geq\left(\frac{KL}{r}\right)_{c}                (11-80)

 

n_{2}=1.92

 

\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{(KL/r)^{2}_{c}}{2n_{2}(KL/r)^{2}}=\frac{(125.7)^{2}}{2(1.92)(133.0)^{2}}=0.2326

 

\sigma_{allow} = 0.2326\sigma_{Y} = 0.2326(250 MPa) = 58.15 MPa

Thus, the allowable axial load is

P_{allow} = \sigma_{allow}A = (58.15 MPa)(3365 mm²) = 196 kN

Since this load is less than the required load of 240 kN, we must try a larger value of the thickness t.
Additional trials. Performing similar calculations for t = 8 mm and t = 9 mm, we get the following results:

t = 7.0 mm        P_{allow} = 196 kN

t = 8.0 mm        P_{allow} = 220 kN

t = 9.0 mm        P_{allow} = 243 kN

By interpolation, we see that t = 8.9 mm corresponds to a load of 240 kN. Therefore, the required thickness of the pipe column is

t_{\min} = 8.9 mm

Related Answered Questions