Question 10.20: For the beam shown in Figure 10.37, a 2 kg block is dropped ...

For the beam shown in Figure 10.37, a 2 kg block is dropped from the position shown onto a 16-mmdiameter rod. Calculate (a) the maximum deflection of end A, (b) the maximum bending moment in the rod and (c) the maximum normal stress developed in the rod. Assume E = 200 GPa.

10.37
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us draw the free-body diagram of the beam loading as shown in Figure 10.38, and first calculate the static parameters \delta_{ A }\left(M_{\max }\right)_{ st } \text { and }\left(\sigma_{\max }\right)_{ st } as follows:

Now bending moment at any distance x from end C is

M_x=\left\{\begin{array}{lr} -19.62 x  N m ; & 0 \leq x \leq 0.6  m \\ -19.62 x+39.24  N m ; & x=0.6  m \\ 19.62 x-23.544  N m ; & 0.6 \leq x \leq 1.2  m \end{array}\right\}

Therefore,

\left|\left(M_x\right)_{\max }\right|=\left|M_{\max }\right|=(19.62) \times(0.6)  N m =11.772  N m

And maximum bending stress is

\left(\sigma_{\max }\right)_{ st }=\frac{32 M_{\max }}{\pi d^3}=\frac{(32)(11.772)\left(10^3\right)}{\pi(16)^3}

or          \left(\sigma_{\max }\right)_{ st }=29.27  MPa

Now, strain energy of beam is

U=\left\lgroup \frac{2}{2 E I} \right\rgroup \int_0^{0.6} P^2 x^2 d x \text {; where } P=19.62  N

=\left\lgroup\frac{1}{E I}\right\rgroup \frac{P^2(0.6)^3}{3}

Therefore, by Castigliano’s second theorem [refer Eq. (10.66)], we get deflection at point A where the mass strikes as

\frac{\partial U}{\partial Q_i}=\Delta_i ; \quad 1 \leq i \leq n             (10.66)

\delta_{ A }=\frac{\partial U}{\partial P}=\left\lgroup \frac{2 P}{3 E I} \right\rgroup(0.6)^3=\frac{(2)(19.62)(0.6)^3}{(3)(200)\left(10^9\right) \frac{\pi}{64}(0.016)^4}

or        \delta_{ A }=4.39  mm

Let dynamic amplification factor be μ, then

\mu=1+\sqrt{1+\frac{2 h}{\delta_{ st }}}

or          \mu=1+\sqrt{1+\frac{80}{4.39}}=5.384

And our static results are

\left(\delta_{ A }\right)_{ st }=4.39  mm , \quad\left(M_{\max }\right)_{ st }=11.772  N m \quad \text { and } \quad\left(\sigma_{\max }\right)_{ st }=29.27  MPa

The corresponding dynamic results are

\begin{aligned} \delta_{ A } &=\mu\left(\delta_{ A }\right)_{ st }=(5.384)(4.39)  mm =23.64  mm \\ M_{\max } &=\mu\left(M_{\max }\right)_{ st }=(5.384)(11.772)  N m =63.38  N m \\ \sigma_{\max } &=\mu\left(\sigma_{\max }\right)_{ st }=(5.384)(29.27)  MPa =157.59  MPa \end{aligned}

10.38

Related Answered Questions

Question: 10.23

Verified Answer:

Clearly, bending moment at any section at a distan...
Question: 10.22

Verified Answer:

(a) Free end deflection: Since we have been asked ...