Question 10.21: A cantilever beam with circular section of radius r and leng...

A cantilever beam with circular section of radius r and length L is subjected to a concentrated load P at its free end. Estimate its total strain energy.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (10.17), we get strain energy due to shear is

U_i=\int_0^{L_i} \frac{P^2}{2( AE )_i} d x ; \quad 1 \leq i \leq 3              (10.17)

U=\underset{\sout{V}}{\iiint} \frac{\tau^2}{2 G} d \sout{V} ; \quad \text { where } \tau=\frac{V Q}{b I}                  (1)

Referring to Figure 10.39, we can find τ as follows:

Therefore,

\tau=\left\lgroup\frac{V}{I} \right\rgroup \frac{Q}{2 \sqrt{r^2-y^2}}

where        Q=\int_y^r 2 \sqrt{r^2-y^2} y d y \quad \text { and } \quad b=2 \sqrt{r^2-y^2}

that is,          Q=-\int_y^r \sqrt{r^2-y^2}(-2 y) d y=-\frac{2}{3}\left[\left(r^2-y^2\right)\right]_y^{3 r / 2}

or          Q=\frac{2}{3}\left(r^2-y^2\right)^{3 / 2}

Therefore,

\tau=\left\lgroup \frac{V}{I} \right\rgroup \frac{(2 / 3)\left(r^2-y^2\right)^{3 / 2}}{2\left(r^2-y^2\right)^{1 / 2}}=\left\lgroup \frac{V}{3 I} \right\rgroup\left(r^2-y^2\right)

From Eq. (1),

U=\int_0^L\left\lgroup \underset{A}{\iint} \frac{\tau^2}{2 G} d A \right\rgroup d x=\int_0^L\left\lgroup\frac{V^2}{9 I^2} \int_{-r}^{+r} \frac{1}{2 G}\left(r^2-y^2\right)^2(2)\left(r^2-y^2\right)^{1 / 2} d y \right\rgroup d x

=\left\lgroup \frac{V^2 L}{9 G I^2} \right\rgroup_{-r}^{+r}\left(r^2-y^2\right)^{5 / 2} d y

Therefore,

U=\frac{2}{9}\left\lgroup \frac{V^2 L}{G I^2} \right\rgroup_0^r\left(r^2-y^2\right)^{5 / 2} d y              (2)

Let          A=\int_0^r\left(r^2-y^2\right)^{5 / 2} d y

Putting y = r sinθ ⇒ dy = r cosθ

A=\int_0^{\pi / 2} r^6 \cos ^6 d \theta=r^6 \int_0^{\pi / 2} \sin ^6 \theta d \theta

or            2 A=r^6 \int_0^{\pi / 2}\left(\sin ^6 \theta+\cos ^6 \theta\right) d \theta

=r^6 \int_0^{\pi / 2}\left\lgroup 1-\frac{3}{4} \sin ^2 2 \theta \right\rgroup d \theta

=r^6 \int_0^{\pi / 2}\left\lgroup 1-\frac{3}{8}\{1-\cos 4 \theta\} \right\rgroup d \theta

=r^6 \int_0^{\pi / 2}\left\lgroup\frac{5}{8}+\frac{3}{8} \cos 4 \theta  \right\rgroup d \theta=\frac{5 \pi r^6}{16}

Thus,

A=\int_0^r\left(r^2-y^2\right)^{5 / 2} d y=\frac{5 \pi r^6}{32}

From Eq. (2), we get

U=\frac{2}{9} \frac{V^2 L}{G I^2} \times \frac{5 \pi r^6}{32}

=\frac{5}{(9)(16)} \pi r^6 \frac{V^2 L}{G} \frac{16}{\pi^2 r^8}=\frac{5}{9} \frac{V^2 L}{G A}

=\frac{10}{9}\left\lgroup \frac{V^2}{A^2} \right\rgroup\left\lgroup \frac{1}{2 G} \right\rgroup (A L)

\text { If } V / A=\tau_{\text {avg }} is average shear stress, then

U=\left\lgroup \frac{10}{9} \right\rgroup \tau_{\text {avg }}^2 \frac{A L}{2 G}

Hence, energy shape factor λ for circular beam section is 10/9.

10.39

Related Answered Questions

Question: 10.23

Verified Answer:

Clearly, bending moment at any section at a distan...
Question: 10.22

Verified Answer:

(a) Free end deflection: Since we have been asked ...