Question 10.23: Find δC , δD , δC of the cantilever beam shown in Figure 10....

Find \delta_C, \delta_D, \delta_C  of the cantilever beam shown in Figure 10.43.

10.43
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Clearly, bending moment at any section at a distance x from end B is given by

M_x=\left\{\begin{array}{ll} 0 ; & 0 \leq x \leq L / 3 \\ -P_1\left\lgroup x-\frac{L}{3} \right\rgroup ; & L / 3 \leq x \leq 2 L / 3 \\ -P_2\left\lgroup x-\frac{2 L}{3} \right\rgroup -P_1\left\lgroup x-\frac{L}{3} \right\rgroup ; & 2 L / 3 \leq x \leq L \end{array}\right\}

\text { where } P_1=P_2=P_1 \text { (let) and } P_{ D }=P_1, P_{ C }=P_2 . Therefore,

U=\left\lgroup \frac{1}{2 E I} \right\rgroup \int_0^L M_x^2 d x

or            U=\left\lgroup \frac{1}{2 E I} \right\rgroup \left[\int_{L / 3}^{2 L / 3} M_x^2 d x+\int_{2 L / 3}^L M_x^2 d x\right]              (1)

Differentiating under integral sign using Leibneitz’s rule, we get

\frac{\partial U}{\partial P_1}=\left\lgroup \frac{1}{E I} \right\rgroup \left[\int_{L / 3}^{2 L / 3} M_x \frac{\partial M_x}{\partial P_1} d x+\int_{2 L / 3}^L M_x \frac{\partial M_x}{\partial P_1} d x\right]

=\left\lgroup \frac{1}{E I} \right\rgroup\left\{\int_{L / 3}^{2 L / 3} P_1\left\lgroup x-\frac{L}{3} \right\rgroup^2 d x+\int_{2 L / 3}^L\left\lgroup x-\frac{L}{3} \right\rgroup\left[P_1\left\lgroup x-\frac{L}{3} \right\rgroup +P_2\left\lgroup x-\frac{2 L}{3} \right\rgroup\right] d x\right\}

Therefore,

\frac{\partial U}{\partial P_1}=\left\lgroup \frac{1}{E I} \right\rgroup\left\{\left[\frac{P_1}{3}\left\lgroup x-\frac{L}{3} \right\rgroup^3\right]_{L / 3}^{2 L / 3}+\left[\frac{P_1}{3}\left\lgroup x-\frac{L}{3} \right\rgroup^3+P_2\left\lgroup \frac{x^3}{3}-\frac{L x^2}{2}+\frac{2 L^2}{9} x \right\rgroup\right]_{2 L / 3}^L\right\}

=\frac{1}{E I}\left\lgroup \frac{P_1 L^3}{81}+\frac{8 P_1 L^3}{81}+\frac{P_2 L^3}{18}-\frac{P_1 L^3}{81}-\frac{2 P_2 L^3}{81} \right\rgroup

=\frac{1}{E I}\left[\frac{8 P_1 L^3}{81}+\frac{5 P_2 L^3}{(81)(2)}\right]

By Castigliano’s second theorem

\delta_{ D }=\underset{\substack{P_1 \rightarrow P \\ P_2 \rightarrow P}}{Lt } \frac{\partial U}{\partial P_1}=\underset{\substack{P_1 \rightarrow P \\ P_2 \rightarrow P}}{Lt } \frac{1}{E I}\left[\frac{16 P_1 L^3}{162}+\frac{5 P_2 L^3}{162}\right]

or            \delta_{ D }=\frac{21 P L^3}{162 E I}=\frac{7 P L^3}{54 E I}

Therefore,

\delta_{ D }=\frac{7 P L^3}{54 E I}(\downarrow)

Again from Eq. (1) above

\frac{\partial U}{\partial P_2}=\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_{L / 3}^{2 L / 3} M_x \frac{\partial M_x}{\partial P_2} d x+\int_{2 L / 3}^L M_x \frac{\partial M_x}{\partial P_2} d x\right]

or            \frac{\partial U}{\partial P_2}=\left\lgroup \frac{1}{E I} \right\rgroup\left\{\int_{L / 3}^{2 L / 3}-P_1\left\lgroup x-\frac{L}{3} \right\rgroup \cdot 0 d x+\int_{2 L / 3}^L\left[P_2\left\lgroup x-\frac{2 L}{3} \right\rgroup^2+P_1\left\lgroup x-\frac{L}{3} \right\rgroup\left\lgroup x-\frac{2 L}{3} \right\rgroup\right] d x\right\}

=\left\lgroup \frac{1}{E I} \right\rgroup\left[\frac{P_2\left\lgroup x-\frac{2 L}{3} \right\rgroup ^3}{3}+P_1\left\lgroup \frac{x^3}{3}-\frac{L x^2}{2}+\frac{2 L^2 x}{9} \right\rgroup\right]_{2 L / 3}^L

=\left\lgroup =\frac{1}{E I} \right\rgroup\left[\frac{P_2 L^3}{81}+\frac{P_1 L^3}{18}-\frac{2 P_2 L^3}{81}\right]

=\left\lgroup \frac{1}{E I} \right\rgroup \left[\frac{P_1 L^3}{18}-\frac{P_2 L^3}{81}\right]=\frac{L^3}{162 E I}\left(9 P_1-2 P_2\right)

Therefore,

\delta_{ C }=\underset{\substack{P_1 \rightarrow P \\ P_2 \rightarrow P}}{Lt }\left\lgroup \frac{\partial U}{\partial P_2} \right\rgroup

or          \delta_{ C }=\frac{7 P L^3}{162 E I}(\downarrow)

To find \delta_{ B } , we note there is no generalised force acting on the structure and hence we put a dummy load Q at B and calculate the strain energy of the beam (Figure 10.44). The bending moment, M_x of the beam at any distance x from free end of the beam is

M_x=\left\{\begin{array}{lrl} -Q x ; & & 0 \leq x \leq \frac{L}{3} \\ -P\left\lgroup x-\frac{L}{3} \right\rgroup-Q x ; & & \frac{L}{3} \leq x \leq \frac{2 L}{3} \\ -P\left\lgroup x-\frac{2 L}{3} \right\rgroup -P\left\lgroup x-\frac{L}{3} \right\rgroup -Q x ; & \frac{2 L}{3} & \leq x \leq L \end{array}\right\}

Therefore,

U=\left\lgroup \frac{1}{2 E I} \right\rgroup \int_0^L M_x^2 d x

=\left\lgroup\frac{1}{2 E I} \right\rgroup \left[\int_0^{L / 3} M_x^2 d x+\int_{L / 3}^{2 L / 3} M_x^2 d x+\int_{2 L / 3}^L M_x^2 d x\right]

Differentiating with respect to Q, we get

\frac{\partial U}{\partial Q}=\left\lgroup\frac{1}{E I} \right\rgroup\left[\int_0^{L / 3} M_x\left\lgroup\frac{\partial M_x}{\partial Q} \right\rgroup d x+\int_{L / 3}^{2 L / 3} M_x\left\lgroup\frac{\partial M_x}{\partial Q} \right\rgroup d x+\int_{2 L / 3}^L M_x\left\lgroup\frac{\partial M_x}{\partial Q} \right\rgroup d x\right]

=\left\lgroup\frac{1}{E I} \right\rgroup \left\{\int_0^{L / 3} Q x^2 d x+\int_{L / 3}^{2 L / 3}\left[P\left\lgroup x^2-\frac{L x}{3} \right\rgroup+Q x^2\right] d x+\int_{2 L / 3}^L\left[P\left(2 x^2-x L\right)+Q x^2\right] d x\right\}

Now, by Castigliano’s second theorem

\delta_{ B }=\underset{Q \rightarrow 0}{Lt}\left\lgroup \frac{\partial U}{\partial Q} \right\rgroup

=\frac{1}{E I}\left[\int_{L / 3}^{2 L / 3} P\left\lgroup x^2-\frac{L x}{3} \right\rgroup d x+\int_{2 L / 3}^L P\left(2 x^2-x L\right) d x\right]

Thus,

\delta_{ B }=\left\lgroup \frac{1}{E I} \right\rgroup\left\{P\left[\frac{x^3}{3}-\frac{L x^2}{6}\right]_{L / 3}^{2 L / 3}+\left[P\left\lgroup \frac{2 x^3}{3}-\frac{x^2 L}{2} \right\rgroup\right]_{2 L / 3}^L\right\}

=\left\lgroup \frac{1}{E I} \right\rgroup \left[P\left\lgroup \frac{8 L^3}{81}-\frac{2 L^3}{27}-\frac{L^3}{81}+\frac{L^3}{54} \right\rgroup +P\left\lgroup \frac{2 L^3}{3}-\frac{L^3}{2}-\frac{16 L^3}{81}+\frac{2 L^3}{9} \right\rgroup \right]

=\left\lgroup \frac{1}{E I} \right\rgroup \left\lgroup \frac{5 P L^3}{162}+\frac{31 P L^3}{162} \right\rgroup =\frac{36 P L^3}{162 E I}=\frac{2 P L^3}{9 E I}

Thus,          \delta_{ B }=\frac{2 P L^3}{9 E I}(\downarrow)

10.44

Related Answered Questions

Question: 10.22

Verified Answer:

(a) Free end deflection: Since we have been asked ...