Question 2.16: he state of stress at a point in xyz reference is as follows...

he state of stress at a point in xyz reference is as follows.

\tau_{i j}=\begin{vmatrix} {80} & {-60} & {0} \\ {-60} & {-40} & {0} \\ {0} & {0} & {40} \end{vmatrix}  MPA

Determine the stress tensor in the direction x^{\prime}y^{\prime}z^{\prime} by rotating xyz through 30° anticlockwise about z-direction as shown in Fig. 2.26.

Screenshot 2022-10-12 232730
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Direction cosines,

c_{x^{\prime} x}=\cos 30^{\circ}=0.866,

 

c_{x^{\prime} y}=\cos 60^{\circ}=0.5,

 

c_{x^{\prime} z}=\cos 90^{\circ}=0,

 

c_{zx^{\prime} } =\cos 90^{\circ}=0,

 

c_{z z^{\prime}}=\cos 0^{\circ}=1,

 

c_{y x^{\prime}}=\cos 120^{\circ}=-0.5,

 

c_{ y^{\prime}y}=\cos 30^{\circ}=0.866,

 

c_{ y^{\prime}z}=\cos 90^{\circ}=0,

 

c_{z y^{\prime}}=\cos 90^{\circ}=0

Using Eq. (2.10),

\tau_{n s}=\sum_{i j} \tau_{i j} \times c_{n i} \times c_{s j}

where all combinations of n, s = x^{\prime},y^{\prime}, z^{\prime}  and i, j = x, y, z are exhausted.

(1) n = x^{\prime}, s=x^{\prime}

 

\tau _{x^{\prime} x^{\prime}}=c_{x^{\prime} x} c_{x^{\prime} x}\tau_{x x}+c_{x^{\prime} x} c_{x^{\prime} y} \tau_{x y}+c_{x^{\prime} x} c_{x^{\prime} z} \tau_{x z}

 

+c _{x^{\prime} y} c_{x^{\prime} x} \tau_{y x}+c_{x^{\prime} y} c_{x^{\prime} y} \tau_{y y}+c_{x^{\prime} y} c_{x^{\prime} z} \tau_{y z}

 

+c_{x^{\prime} z} c_{x x^{\prime} x} \tau_{z x}+c_{x^{\prime} z} c_{x^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{x^{\prime} z} \tau_{z z}

 

=0.866^2 \times 80-0.866 \times 0.5 \times 60+0-

 

0.5 \times 0.866 \times 60-0.5^2 \times 40+0 =-1.96  MPa

(2) n = x^{\prime}, s=y^{\prime}

\tau_{x^{\prime} y^{\prime}}=c_{x^{\prime} x} c_{y^{\prime} x} \tau_{x x}+c_{x^{\prime} x} c_{y^{\prime} y^{\prime}} \tau_{x y}+c_{x^{\prime} x} c_{y^{\prime} z^{\prime}} \tau_{x z}

 

+c_{x^{\prime} y} c_{y^{\prime} x} \tau_{y x}+c_{x^{\prime} y} c_{y^{\prime} y} \tau_{y y}+c_{x^{\prime} y} c_{y^{\prime} z} \tau_{y z}

 

+c_{x^{\prime} z} c_{y^{\prime} x} \tau_{z x}+c_{x^{\prime} z} c_{y^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{y^{\prime} z} \tau_{z z}

 

=-0.866 \times 0.5 \times 80-0.866^2 \times 60+0.5 \times 0.5 \times 60-0.5 \times 0.866 \times 40 = -81.96 MPa

(3) n = x^{\prime}, s=z^{\prime}

\tau_{x^{\prime} z^{\prime}}=c_{x^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{x x^{\prime}} c_{z^{\prime} y} \tau_{x y}+c_{x^{\prime} x} c_{z^{\prime} z} \tau_{x z}

 

+c_{x^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{x y^{\prime}} c_{z y^{\prime}} \tau_{y y}+c_{x^{\prime} y} c_{zz^{\prime}} \tau_{y z}

 

+c_{x^{\prime} z} +c_{z^{\prime} x} \tau_{z x}+c_{x z^{\prime}} c_{z^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{z^{\prime} z^{\prime}} \tau_{z z}=0

(4) n=y^{\prime}, s=y^{\prime}

\tau_{y^{\prime} y^{\prime}}=c_{y^{\prime} x} c_{y^{\prime} x} \tau_{x x}+c_{y^{\prime} x} c_{y^{\prime} y^{\prime}} \tau_{x y}+c_{y^{\prime} x} c_{y^{\prime} z} \tau_{x z}

 

+c_{y y^{\prime}} c_{y^{\prime} x} \tau_{y x}+c_{y^{\prime} y} c_{y^{\prime} y} \tau_{y y}+c_{yy^{\prime}} c_{y^{\prime} z} \tau_{y z}

 

+c_{y^{\prime} z} c_{y^{\prime} x} \tau_{z x}+c_{y^{\prime} z} c_{y^{\prime} y^{\prime}} \tau_{y z}+c_{y^{\prime} z^{\prime}} c_{y^{\prime} z} \tau_{z z}

 

=0.5^2 \times 80+0.866 \times 0.5 \times 60+0+0.5 \times 0.866 \times 60-0.866^2 \times 40+0=41.96  MPa

(5) n=y^{\prime}, s=z^{\prime}

\tau_{y^{\prime} z^{\prime}}= c_{y^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{y^{\prime} x} c_{z^{\prime} y} \tau_{x y}+c_{y^{\prime} x} c_{z^{\prime} z} \tau_{x z}

 

+c_{y^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{y^{\prime} y} c_{z^{\prime} y} \tau_{y y}+c_{y^{\prime} y} c_{z z^{\prime}} \tau_{y z}

 

+c_{y^{\prime}z^{\prime}} c_{z^{\prime} x} \tau_{z x}+c_{y^{\prime} z^{\prime}} c_{z^{\prime} y} \tau_{y z}+c_{zz^{\prime} } c_{z z^{\prime}} \tau_{z z}=0

 

(6) n= z^{\prime}, s=z^{\prime}

 

\tau_{z^{\prime} z^{\prime}}= c_{z^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{z^{\prime} x} c_{z^{\prime} y} \tau_{x y}+c_{z^{\prime} x} c_{z z^{\prime}} \tau_{x z}

 

+c_{z^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{z^{\prime} y} c_{z^{\prime} y} \tau_{y y}+c_{z^{\prime} y} c_{z z^{\prime} } \tau_{y z}

 

+c_{z^{\prime} z} c_{z^{\prime} x} \tau_{z x}+c_{z^{\prime} z} c_{z^{\prime} y} \tau_{y z}+c_{z^{\prime} z} c_{z^{\prime} z} \tau_{z z} . =1 \times 1 \times 40=40  MPa

Since the stress tensor is symmetric, all the terms can now be written as follows.

\tau_{n s}=\begin{vmatrix} {-1.96} & {-81.96} & {0} \\ {- 81.96} & {41.96} & {0} \\ {0} & {0} & {40} \end{vmatrix}

Alternately these calculations can be done by matrix multiplication as follws.

Stress tensor, \left[\tau_{i j}\right]=\begin{vmatrix} {80 } & {-60} & {0} \\ {-60} & {-40} & {0} \\ {0} & {0} & {40} \end{vmatrix}  MPa

Direction cosine matrix for transformation,

\left[C\right]=\begin{vmatrix} {0.866} & {0.5} & {0} \\ {- 0.5} & {0.866} & {0} \\ {0} & {0} & {1} \end{vmatrix}

Using Eq. (2.10d) in matrix notation,

\left[\tau_{n s}\right]=\left[c\right]\times \left[\tau_{i j}\right]\times\left[c\right]^{T}
or, \left[\tau_{n s}\right]=\begin{vmatrix} {0.866} & {0.5} & {0} \\ {- 0.5} & {0.866} & {0} \\ {0} & {0} & {1} \end{vmatrix}\begin{vmatrix} {80 } & {-60} & {0} \\ {-60} & {-40} & {0} \\ {0} & {0} & {40} \end{vmatrix}\begin{vmatrix} {0.866} & {-0.5} & {0} \\ {- 0.5} & {0.866} & {0} \\ {0} & {0} & {1} \end{vmatrix}

or \left[\tau_{n s}\right]=\begin{vmatrix} {-1.96} & {-81.96} & {0} \\ {-81.96} & {41.96} & {0} \\ {0} & {0} & {40} \end{vmatrix}  MPa

Related Answered Questions

Question: 2.17

Verified Answer:

Direction cosine matrix for transformation (Fig. 2...
Question: 2.12

Verified Answer:

Plot the three stresses on a straight line ...