Question 2.18: Figure 2.28 shows the state of stress at a point. Determine ...

Figure 2.28 shows the state of stress at a point. Determine the principal normal and shear stresses and the orientation at which they act. Also determine the octahedral normal and shear stresses.

Screenshot 2022-10-13 035040
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Stress tensor, \left[\tau _{ i j}\right]=\begin{vmatrix} {3} & {2} & {0} \\ {2} & {4} & {1} \\ {0} & {1} & {2} \end{vmatrix}  MPa

Stress invariants,

I_1 =\tau_{x x}+\tau_{y y}+\tau_{z z}=3+4+2=9

 

I_2 =\tau_{x x} \tau_{y y}+\tau_{y y} \tau_{z z}+\tau_{z z} \tau_{x x}-\tau_{x y}^2-\tau_{y z}^2-\tau_{z x}^2

 

=3 \times 4+4 \times 2+2 \times 3-2^2-1^2-0 =21

 

I_3=\begin{vmatrix} {\tau_{x x}} & {\tau_{x y}} & {\tau_{z x}} \\ {\tau_{x y}} & {\tau_{x y}} & {\tau_{z y}} \\ {\tau_{x z}} & {\tau_{y z}} & {\tau_{z z}} \end{vmatrix}= \begin{vmatrix} {3} & {2} & {0} \\ {2} & {4} & {1} \\ {0} & {1} & {2} \end{vmatrix}=13

Substituting in Eq. (2.13b),

\tau_{n n}^3-I_1 \tau_{n n}^2+I_2 \tau_{n n}-I_3=0

or, \tau_{n n}^3-9 \tau_{n n}^2+21 \tau_{n n}-13=0

Solving by hit and trial, \tau_{n n}=1,2.27,5.73

Using Eqs (2.11) and (2.12), for direction cosines of the plane, when, principal normal stress \sigma_I=1  MPa,

\tau _{xy}\times c_{nx}+(\tau _{yy}-\tau _{nn})\times c_{ny}+\tau _{zy}\times c_{nz}=0            (2.11b)

\left(c_{n x}\right)^2+\left(c_{n y}\right)^2+\left(c_{n z}\right)^2=1             (2.12)

 

(3-1) \times c_{n x}+2 \times c_{n y}=0

 

2 \times c_{n x}+(4-1) \times c_{n y}+1 \times c_{n z}=0

 

1 \times c_{n y}+(2-1) \times c_{n z}=0

Solution of these equations gives,

c_{n x}=c_{n y}=-c_{n z}=\pm 1 / \sqrt{3}

Again using Eqs (2.11) and (2.12), for direction cosines of the plane, when, principal normal stress \sigma_{II} = 2.27 MPa

 

\left(c_{n x}\right)^2+\left(c_{n y}\right)^2+\left(c_{n z}\right)^2=1

 

(3-2.27) \times c_{n x}+2 \times c_{n y}=0

 

2 \times c_{n x}+(4-2.27) \times c_{n y}+1 \times c_{n z}=0

 

1 \times c_{n y}+(2-2.27) \times c_{n z}=0

Solution of these equations gives,
-c_{n x}=\pm 0.5811,

c_{n y}=\pm 0.2121,

and c_{n z}=\pm 0.7855

Similarly, when principal normal stress \sigma_{III}= 5.73 MPa, the direction cosines are,

c_{n x}=\pm 0.5776,

c_{n y}=\pm 0.7884,

and, c_{n z}=\pm 0.2113

Normal octahedral stress, Eq. (2.14),

\tau_{n n, oct } =\frac{\tau _{xx}+\tau _{yy}+\tau _{zz}}{}=\frac{\sigma_I+\sigma_{I I}+\sigma_{I I I}}{3}                 (2.14)

\tau_{n n, oct } =\frac{\sigma_I+\sigma_{I I}+\sigma_{I I I}}{3}=\frac{1+2.27+5.73}{3} = 3 MPa

Octahedral shear stress is given by Eq. (2.18),

\tau _{n s,oct}=\frac{1}{3} \sqrt{(\sigma _{I}-\sigma _{II})^2 +(\sigma _{II}-\sigma _{III})^2+(\sigma _{III}-\sigma _{I})^2 }

 

=\frac{1}{3} \sqrt{(1-2.27)^2+(2.27-5.73)^2 +(5.73-1)^2}=2  MPa

Principal shear stress and normal stress on the planes of principal shear stress are given by Eq. (2.20)

\tau _{I}=\frac{\sigma _{II}-\sigma _{III}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{II}+\sigma _{III}}{2} (2.20a)

 

\tau _{II}=\frac{\sigma _{III}-\sigma _{I}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{III}+\sigma _{I}}{2} (2.20b)

 

\tau _{III}=\frac{\sigma _{I}-\sigma _{II}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{I}+\sigma _{II}}{2} (2.20c)

 

\tau_I =\frac{2.27-1}{2}=\pm 0.635  MPa ,

 

\sigma_n=\frac{1+2.27}{2}=1.635  MPa

 

\tau_{I I}=\frac{5.73-2.27}{2}=\pm 1.73  MPa ,

 

\sigma_n=\frac{2.27+5.73}{2}=4  MPa

 

\tau_{III}=\frac{5.73-1}{2}=\pm 2.365  MPa ,

 

\sigma_n=\frac{5.73+1}{2}=3.365  MPa

The planes of principal shear stress bisect the planes of principal normal stress.

Related Answered Questions

Question: 2.17

Verified Answer:

Direction cosine matrix for transformation (Fig. 2...
Question: 2.12

Verified Answer:

Plot the three stresses on a straight line ...