Question 2.20: Tensile stresses of 100 MPa and 50 MPa are acting on two per...
Tensile stresses of 100 MPa and 50 MPa are acting on two perpendicular planes in a body. Determine the resultant stress inclined at 35° to the major principal plane using stress ellipsoid.
Learn more on how we answer questions.
Draw two circles corresponding to the principal stress 100 MPa and 50 MPa as shown in Fig. 2.29. Draw a line ABO at 35° to the major principal stress. Intersection point C of a horizontal line from B and a vertical line from A, is the location of the resultant stress \sigma_r = OC = 86.8 MPa. Similarly, the resultant stress at any plane can be obtained and the locus of point C will be an ellipse.
Mathematically,
OD = \sigma_1 cos 35° = 100 cos 35°
CD = \sigma_2 sin 35° = 50 sin 35°
From Eqs (2.1a) and (2.2),
\sigma_{x^{\prime}}=\sigma _x \cos^2 \theta +\sigma _y \sin^2 \theta-\tau _{xy}\sin 2\theta (2.1a)
\tau_{x^{\prime}y^{\prime}}=\frac{\sigma _x-\sigma _y}{2}\sin 2\theta +\tau _{xy}\cos 2\theta (2.2)
\sigma_{x^{\prime}} = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta (i)
and \tau _{x^{\prime} y^{\prime}} = (\sigma_1- \sigma_2) \times \sin \theta \times \cos \theta (ii)
Resultant stress of (i) and (ii),
\sigma_r=\sqrt{\left(\sigma_{x^{\prime}}\right)^2+\left(\tau_{x^{\prime} y^{\prime}}\right)^2}=\sqrt{\left(\sigma_1 \cos ^2 \theta+\sigma_2 \sin ^2 \theta\right)^2+\left(\left(\sigma_1-\sigma_2\right) \sin \theta \cos \theta\right)^2}
=\sqrt{\left(100\cos 35 ^\circ \right)^2 +\left(50\cos 35 ^\circ \right)^2}= 86.8 Mpa
