Question 2.21: Write a computer program to calculate normal and shear stres...

Write a computer program to calculate normal and shear stress on any inclined plane. It should calculate principal stresses and their location. Input data for the program will be the direct and shear stresses on two mutually perpendicular planes (\sigma_x ,\sigma _y,\tau _{x y}) and the angle of the inclined plane.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The following computer program in Qbasic will solve for \sigma_x^{\prime} = FX1, \tau _{x^{\prime}y^{\prime}}, = SXY1, principal direct and shear stresses = FMAX, FMIN, SMAX. Location of principal direct stress = TP.

REM CALCULATE    –    DIRECT AND SHEAR
.                                           FORCE ON PLANE
.                                           INCLINED AT ANGLE
.                                           THETA DEG. TO X-AXIS
.CALCULATE     –            PRINCIPAL STRESSE
.                                          ANI THEIR LOCATION
.SIGN CONVENTION – TENSION +VE, COMP.-ve,
.SHEAR CLOCKWISE  +  VE,  THETA
.ANTICLOCKWISE      +   VE
.FX,   FY = DIRECT FORCE IN  X,   Y

.DIRECTION
. SXY = SHEAR FORCE IN XY DIRECTION
CLS
INPUT  FX,   FY,   SXY,   THETA
FP = (FX + FY)/2
FM = (FX – FY)/2
T2 = 2 *  THETA *   3.1415927/180
FX1 = FP + FM * COS (T2) – SXY * SIN (T2)
SXY1 = FM * SIN (T2) + SXY * COS (T2)
SMAX = SOR (FM A 2 + SXY A 2)
FMAX = FP + SMAX
FMIN = FP – SMAX
TP = .5 * ATN (-SXY/FM) * 180/3.1415927
PRINT “FX1 = “; FX1 , “SXY1 = “; SXY1
PRINT “FMAX = “; FMAX ; “FMIN = “; FMIN ; ;
PRINT ” ANGLE TP = “: TP
PRINT “SMAX = “; SMAX
END

If screen input for Ex. 2.3 is : -40, 80, 60, 135 then screen output will be as follows,

FX1 = 80 SXY1 = 60

FMAX = 104.8528 FMIN = —64.85281

ANGLE TP = 22.5

SMAX = 84.85281

Related Answered Questions

Question: 2.17

Verified Answer:

Direction cosine matrix for transformation (Fig. 2...
Question: 2.12

Verified Answer:

Plot the three stresses on a straight line ...