Question 2.22: Figure 2.30(a) shows an element under axial stress 20 MPa an...

Figure 2.30(a) shows an element under axial stress 20 MPa and 50 MPa along with shear stress 40 MPa in x-y plane. Determine the state of stress in x^{\prime} – y^{\prime} plane at 30° counter-clockwise to x-y plane.

Screenshot 2022-10-14 020439
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation (2.11b) can be used to cal-culate stresses in \acute{x}-y^{\prime} plane and Eq. (2.13a) will give principal stresses. The directive cosines in transfer matrix are drived from Fig. 2.30(b) as follows.

\tau_{x y} \times c_{n x}+\left(\tau_{y y}-\tau_{n n}\right) \times c_{n y}+\tau_{z y} \times c_{n z}=0         (2.11b)

\begin{vmatrix} {\left(\tau _{x x} – \tau _{n n}\right)} & {\tau _{y x}} & {\tau _{z x}} \\ {\tau _{x y}} & {\left(\tau _{y y} – \tau _{n n}\right)} & {\tau _{z y}} \\ {\tau _{x z }} & {\tau _{z y}} & {\left(\tau _{z z} – \tau _{n n}\right)} \end{vmatrix}=0          (2.13a)

c_{x^{\prime} x}=\cos \theta

 

c_{x^{\prime} y}=\cos \left(90^{\circ}+\theta\right)=-\sin \theta

 

c_{y^{\prime} x}=\cos \left(90^{\circ}-\theta\right)=\sin \theta

 

c_{y^{\prime} y}=\cos \theta

Substitute these values in Eq. (2.10b) for stresses in x^{\prime} – y^{\prime} reference axes as follows.

\tau_{n n}= \tau_{x x} \times\left(c_{n x}\right)^2+\tau_{y y} \times\left(c_{n y}\right)^2+\tau_{z z} \times\left(c_{n z}\right)^2 +2 \tau_{x y}\left(c_{n x} c_{n y}\right)+2 \tau_{x z}\left(c_{n x} c_{n z}\right)

+2 \tau_{y z}\left(c_{n y} c_{n z}\right)        (2.10b)

 

\begin{vmatrix} {\sigma_{x^{\prime}}}& {\tau _{x^{\prime}y^{\prime}}} \\ {\tau _{y^{\prime} x^{\prime}}} & {\sigma_{y^{\prime}y^{\prime}}} \end{vmatrix} =\begin{vmatrix} {c_{x^{\prime}x}} & {c _{x^{\prime}y}} \\ {c_{y^{\prime} x}} & {c_{y^{\prime} y}} \end{vmatrix} \begin{vmatrix} {\sigma _{x x} } & {\tau _{x y}} \\ {\tau _{y x}} & {\sigma _{y y}} \end{vmatrix} \begin{vmatrix} {c_{x^{\prime}x}} & {c_{y^{\prime} x}} \\ {c_{x^{\prime}x}} & {c_{y^{\prime} y}} \end{vmatrix}

 

=\begin{vmatrix} {0.866 } & {-0.5} \\ {0.5} & {0.866} \end{vmatrix} \begin{vmatrix} {20 } & {40} \\ {40} & {-50} \end{vmatrix} \begin{vmatrix} {0.866 } & {0.5} \\ {-0.5} & {0.866} \end{vmatrix} =\begin{vmatrix} {-32.14 } & {50.3} \\ {50.3} & {2.14} \end{vmatrix}

Principal stresses are given by Eq.(2.13a),

=\begin{vmatrix} {-32.14-\sigma } & {50.3} \\ {50.3} & {2.14 – \sigma } \end{vmatrix}=0

which gives principal stresses

\sigma= 38.14  MPa  and -68.14  MPa

Related Answered Questions

Question: 2.17

Verified Answer:

Direction cosine matrix for transformation (Fig. 2...
Question: 2.12

Verified Answer:

Plot the three stresses on a straight line ...