Question p.6.7: The symmetrical rigid jointed grillage shown in Fig. P.6.7 i...

The symmetrical rigid jointed grillage shown in Fig. P.6.7 is encastré at 6, 7, 8 and 9 and rests on simple supports at 1, 2, 4 and 5. It is loaded with a vertical point load P at 3. Use the stiffness method to find the displacements of the structure and hence calculate the support reactions and the forces in all the members. Plot the bending moment diagram for 123. All members have the same section properties and GJ = 0.8EI.

Screenshot 2022-10-15 185048
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The forces acting on the member 123 are shown in Fig. S.6.7(a). The moment M2M_2 arises from the torsion of the members 26 and 28 and, from Eq. (3.12), is given by

T=GJdθdzT=G J \frac{\mathrm{d} \theta}{\mathrm{d} z}  (3.12)

M2=2GJθ21.6l=EIθ2lM_2=-2 G J \frac{\theta_2}{1.6 l}=-E I \frac{\theta_2}{l}  (i)

Now using the alternative form of Eq. (6.44) for the member 12

{Fy,iMiFy,jMj}=EI[12/L36/L212/L36/L26/L24/L6/L22/L12/L36/L212/L36/L26/L22/L6/L24/L]{viθivjθj}\left\{\begin{array}{l}F_{y, i} \\M_i \\F_{y, j} \\M_j\end{array}\right\}=E I\left[\begin{array}{cccc}12 / L^3 & -6 / L^2 & -12 / L^3 & -6 / L^2 \\-6 / L^2 & 4 / L & 6 / L^2 & 2 / L \\-12 / L^3 & 6 / L^2 & 12 / L^3 & 6 / L^2 \\-6 / L^2 & 2 / L & 6 / L^2 & 4 / L\end{array}\right]\left\{\begin{array}{l}v_i \\\theta_i \\v_j \\\theta_j\end{array}\right\}  (6.44)

{Fy,1M1/lFy,2M2/l}=EIl3[12612664621261266264]{v1θ1Lv2θ2L}\left\{\begin{array}{c}F_{y, 1} \\M_1 / l \\F_{y, 2} \\M_2 / l\end{array}\right\}=\frac{E I}{l^3}\left[\begin{array}{rrrr}12 & -6 & -12 & -6 \\-6 & 4 & 6 & 2 \\-12 & 6 & 12 & 6 \\-6 & 2 & 6 & 4\end{array}\right]\left\{\begin{array}{c}v_1 \\\theta_1 L \\v_2 \\\theta_2 L\end{array}\right\}  (ii)

and for the member 23

{Fy,2M2/lFy,3M3/l}=EIl3[9624962424824496249624244248]{v2θ2Lv3θ3L}\left\{\begin{array}{c}F_{y, 2} \\M_2 / l \\F_{y, 3} \\M_3 / l\end{array}\right\}=\frac{E I}{l^3}\left[\begin{array}{rrrr}96 & -24 & -96 & -24 \\-24 & 8 & 24 & 4 \\-96 & 24 & 96 & 24 \\-24 & 4 & 24 & 8\end{array}\right]\left\{\begin{array}{c}v_2 \\\theta_2 L \\v_3 \\\theta_3 L\end{array}\right\}  (iii)

Combining Eqs (ii) and (iii) using the method described in Example 6.1

{Fy,1M1/lFy,2M2/lFy,3M3/l}=EIl3[12612600646200126108189624621812214009624962400244248]{v1θ1lv2θ2lv3θ3l}\left\{\begin{array}{c}F_{y, 1} \\M_1 / l \\F_{y, 2} \\M_2 / l \\F_{y, 3} \\M_3 / l\end{array}\right\}=\frac{E I}{l^3}\left[\begin{array}{rrrrrr}12 & -6 & -12 & -6 & 0 & 0 \\-6 & 4 & 6 & 2 & 0 & 0 \\-12 & 6 & 108 & -18 & -96 & -24 \\-6 & 2 & -18 & 12 & 21 & 4 \\0 & 0 & -96 & 24 & 96 & 24 \\0 & 0 & -24 & 4 & 24 & 8\end{array}\right]\left\{\begin{array}{c}v_1 \\\theta_1 l \\v_2 \\\theta_2 l \\v_3 \\\theta_3 l\end{array}\right\} (iv)

In Eq. (iv) v1=v2=0 and θ3=0. Also M1=0 and Fy,3=P/2v_1=v_2=0 \text { and } \theta_3=0 \text {. Also } M_1=0 \text { and } F_{y, 3}=-P / 2 \text {. } Then from Eq. (iv)

M1l=0=EIl3(4θ1l+2θ2l)\frac{M_1}{l}=0=\frac{E I}{l^3}\left(4 \theta_1 l+2 \theta_2 l\right)

from which

θ1=θ22\theta_1=-\frac{\theta_2}{2}  (v)

Also, from Eqs (i) and (iv)

M2l=EIl2θ2=EIl3(2θ1l+12θ2l+24v3)\frac{M_2}{l}=-\frac{E I}{l^2} \theta_2=\frac{E I}{l^3}\left(2 \theta_1 l+12 \theta_2 l+24 v_3\right)

so that

13θ2l+2θ1l+24v3=013 \theta_2 l+2 \theta_1 l+24 v_3=0  (vi)

Finally from Eq. (iv)

Fy,3=P2=EIl3(24θ2l+96v3)F_{y, 3}=-\frac{P}{2}=\frac{E I}{l^3}\left(24 \theta_2 l+96 v_3\right)

which gives

v3=Pl3192EIθ2l4v_3=-\frac{P l^3}{192 E I}-\frac{\theta_2 l}{4}  (vii)

Substituting in Eq. (vi) for θ1θ_1 from Eq. (v) and v3v_3 from Eq. (vii) gives

θ2=Pl248EI\theta_2=\frac{P l^2}{48 E I}

Then, from Eq. (v)

θ1=Pl296EI\theta_1=-\frac{P l^2}{96 E I}

and from Eq. (vii)

v3=Pl396EIv_3=-\frac{P l^3}{96 E I}

Now substituting for θ1,θ2 and v3 in Eq. (iv) gives Fy,1=P/16,Fy,2=9P/16\theta_1, \theta_2 \text { and } v_3 \text { in Eq. (iv) gives } F_{y, 1}=-P / 16, F_{y, 2}=9 P / 16 \text {, } M2=Pl/48 (from Eq. (i)) and M3=Pl/6M_2=-P l / 48 \text { (from Eq. (i)) and } M_3=-P l / 6. Then the bending moment at 2 in 12 is Fy,1F_{y,1}l = −Pl/12 and the bending moment at 2 in 32 is −(P/2) (l/2) + M3M_3 = −Pl/12.Also M3M_3 = −Pl/6 so that the bending moment diagram for the member 123 is that shown in Fig. S.6.7(b).

Screenshot 2022-10-15 190036
Screenshot 2022-10-15 190055

Related Answered Questions