Question p.6.12: A rectangular element used in plane stress analysis has corn...

A rectangular element used in plane stress analysis has corners whose coordinates in metres referred to an Oxy axes system are 1(−2, −1), 2(2, −1), 3(2, 1), 4(−2, 1). The displacements of the corners (in metres) are

\begin{aligned}&u_1=0.001 \quad u_2=0.003 \quad u_3=-0.003 \quad u_4=0 \\&v_1=-0.004 \quad v_2=-0.002 \quad v_3=0.001 \quad v_4=0.001\end{aligned}

If Young’s modulus is 200 000 N/mm² and Poisson’s ratio is 0.3 calculate the strains at the centre of the element.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Suitable displacement functions are:

\begin{aligned}&u=\alpha_1+\alpha_2 x+\alpha_3 y+\alpha_4 x y \\&v=\alpha_5+\alpha_6 x+\alpha_7 y+\alpha_8 x y\end{aligned}

Then

\begin{aligned}&u_1=\alpha_1-2 \alpha_2-\alpha_3+2 \alpha_4=0.001  (i) \\&u_2=\alpha_1+2 \alpha_2-\alpha_3-2 \alpha_4=0.003  (ii)\\&u_3=\alpha_1+2 \alpha_2+\alpha_3+2 \alpha_4=-0.003  (iii) \\&u_4=\alpha_1-2 \alpha_2+\alpha_3-2 \alpha_4=0  (iv)\end{aligned}

Subtracting Eq. (ii) from Eq. (i)
\alpha_2-\alpha_4 = 0.0005 (v)
Subtracting Eq. (iv) from Eq. (iii)
\alpha_2+\alpha_4 = −0.00075 (vi)
Subtracting Eq. (vi) from Eq. (v)
\alpha_4= −0.000625
Then, from either of Eqs (v) or (vi)
\alpha_2 = −0.000125
Adding Eqs (i) and (ii)
\alpha_1-\alpha_3= 0.002 (vii)
Adding Eqs (iii) and (iv)
\alpha_1+\alpha_3 = −0.0015 (viii)
Adding Eqs (vii) and (viii)
\alpha_1 = 0.00025

Then from either of Eqs (vii) or (viii)
\alpha_3 = −0.00175
Similarly

\begin{aligned}&\alpha_5=-0.001 \\&\alpha_6=0.00025 \\&\alpha_7=0.002 \\&\alpha_8=-0.00025\end{aligned}

Then

\begin{aligned}&u_i=0.00025-0.00125 x-0.00175 y-0.000625 x y \\&v_i=-0.001+0.00025 x+0.002 y-0.00025 x y\end{aligned}

From Eqs (1.18) and (1.20)

\left.\begin{array}{rl}\varepsilon_x & =\frac{\partial u}{\partial x} \\\varepsilon_y & =\frac{\partial v}{\partial y} \\\varepsilon_z & =\frac{\partial w}{\partial z}\end{array}\right\}  (1.18)

\left.\begin{array}{l}\gamma_{x z}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\\gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \\\gamma_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\end{array}\right\} (1.20)

\begin{aligned}\varepsilon_x &=\frac{\partial u}{\partial x}=-0.000125-0.000625 y \\\varepsilon_y &=\frac{\partial v}{\partial y}=0.002-0.00025 x \\\gamma_{x y} &=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=-0.0015-0.000625 x-0.00025 y\end{aligned}

At the centre of the element where x = y = 0

\varepsilon_x=-0.000125 \quad \varepsilon_y=0.002 \quad \gamma_{x y}=-0.0015

Related Answered Questions