Question p.6.14: The following interpolation formula is suggested as a displa...

The following interpolation formula is suggested as a displacement function for deriving the stiffness of a plane stress rectangular element of uniform thickness t shown in Fig. P.6.14.

u=\frac{1}{4 a b}\left[(a-x)(b-y) u_1+(a+x)(b-y) u_2+(a+x)(b+y) u_3+(a-x)(b+y) u_1\right]

Form the strain matrix and obtain the stiffness coefficients K_{11} and K_{12} in terms of the material constants c, d and e defined below.

In the elasticity matrix [D]

D_{11}=D_{22}=c \quad D_{12}=d \quad D_{33}=e \quad \text { and } \quad D_{13}=D_{23}=0
Screenshot 2022-10-15 201049
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a = 1, b = 2

u=\frac{1}{8}\left[(1-x)(2-y) u_1+(1+x)(2-y) u_2+(1+x)(2+y) u_3+(1-x)(2+y) u_4\right]

Similarly for v
Then

\begin{gathered}\frac{\partial u}{\partial x}=\frac{1}{8}\left[-(2-y) u_1+(2-y) u_2+(2+y) u_3-(2+y) u_4\right] \\\frac{\partial v}{\partial y}=\frac{1}{8}\left[-(1-x) v_1-(1+x) v_2+(1+x) v_3-(1-x) v_4\right] \\\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{1}{8}\left[-(1-x) u_1-(2-y) v_1-(1+x) u_2+(2-y) v_2+(1+x) u_3\right. \\\left.+(2+y) v_3+(1-x) u_4-(2+y) v_4\right]\end{gathered}

In matrix form

\left[\begin{array}{c}\frac{\partial u}{\partial x} \\\frac{\partial v}{\partial y} \\\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\end{array}\right]

 

=\frac{1}{8}\left[\begin{array}{cccccccc}-(2-y) & 0 & (2-y) & 0 & (2+y) & 0 & -(2+y) & 0 \\0 & -(1-x) & 0 & -(1+x) & 0 & (1+x) & 0 & (1-x) \\-(1-x) & -(2-y) & -(1+x) & (2-y) & (1+x) & (2+y) & (1-x) & -(2+y)\end{array}\right]  \left\{\begin{array}{l}u_1 \\v_1 \\u_2 \\v_2 \\u_3 \\v_3 \\u_4 \\v_4\end{array}\right\}

Also

D=\left[\begin{array}{lll}c & d & 0 \\d & c & 0 \\0 & 0 & e\end{array}\right]

Then
[D][B]

=\frac{1}{8}\left[\begin{array}{ccccc}-c(2-y) & -d(1-x) & e(2-y) & -d(1+x) & e(2+y) &d(1 + x)&−c(2 + y)& d(1 − x)\\-d(2-y) & -c(1-x) & d(2-y) & -c(1+x) & d(2+y) &e(1 + x)&−d(2 + y)&c(1 − x)\\-e(1-x) & -e(2-y) & -e(1+x) & e(2-y) & e(1+x) &e(2 + y)&e(1 − x)&−e(2 + y)\end{array}\right]

Then

[B]^{\mathrm{T}}[D][B]=\frac{1}{64}  \left[\begin{array}{ccc}-(2-y) & 0 & -(1-x) \\0 & -(1-x) & -(2-y) \\& \vdots & \\& \vdots & \\& \vdots & \\& \vdots & \\& \vdots & \\& \vdots &\end{array}\right]  \left[\begin{array}{lllll}-c(2-y) & -d(1-x) & \ldots & \ldots & \ldots \\-d(2-y) & -c(1-x) & \ldots & \ldots & \ldots \\-e(1-x) & -e(2-y) & \ldots & \ldots&\ldots\end{array}\right]

Therefore

K_{11}=\frac{t}{64} \int_{-2}^2 \int_{-1}^1\left[c(2-y)^2+e(1-x)^2\right] \mathrm{d} x \mathrm{~d} y

which gives K_{11}=\frac{t}{6}(4 c+e)

K_{12}=\frac{t}{64} \int_{-2}^2 \int_{-1}^1[d(2-y)(1-x)+e(1-x)(2-y)] \mathrm{d} x \mathrm{~d} y

which gives K_{12}=\frac{t}{4}(d+e).

Related Answered Questions