Question 10.14: Estimating Bond Lengths Provide the best estimate you can of...

Estimating Bond Lengths

Provide the best estimate you can of these bond lengths for the (a) the nitrogen-to-hydrogen bonds in NH_3: (b) the bromine-to-chlorine bond in BrCl.

Analyze
If no bond length is listed for a particular bond, \begin{matrix} A-B \end{matrix}, then look up the bond lengths for \begin{matrix} A-A \end{matrix} and \begin{matrix} B-B \end{matrix}. The \begin{matrix} A-B \end{matrix} bond length can then be estimated as one-half the \begin{matrix} A-A \end{matrix} bond length plus one-half the \begin{matrix} B-B \end{matrix} bond length.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The Lewis structure of ammonia (page 400) shows the nitrogen-to-hydrogen bonds as single bonds. The value listed in Table 10.2 for the \begin{array}{r c} \begin{matrix} N-H \end{matrix} \end{array} bond is 100 pm, so this is the value we would predict. (The measured \begin{matrix} N-H \end{matrix} bond length in NH_3 is 101.7 pm.)

TABLE 10.2 Some Average Bond Lengths^a
Bond Bond Length, pm Bond Bond Length, pm Bond Bond Length, pm
\begin{array}{r c} \begin{matrix} H-H \end{matrix} \end{array} 74.14 \begin{array}{r c} \begin{matrix} C-C \end{matrix} \end{array} 154 \begin{array}{r c} \begin{matrix} N-N \end{matrix} \end{array} 145
\begin{array}{r c} \begin{matrix} H-C \end{matrix} \end{array} 110 \begin{array}{r c} \begin{matrix} C=C \end{matrix} \end{array} 134 \begin{array}{r c} \begin{matrix} N=N \end{matrix} \end{array} 123
\begin{array}{r c} \begin{matrix} H-N \end{matrix} \end{array} 100 \begin{array}{r c} \begin{matrix} C \equiv C \end{matrix} \end{array} 120 \begin{array}{r c} \begin{matrix} N \equiv N \end{matrix} \end{array} 109.8
\begin{array}{r c} \begin{matrix} H-O \end{matrix} \end{array} 97 \begin{array}{r c} \begin{matrix} C-N \end{matrix} \end{array} 147 \begin{array}{r c} \begin{matrix} N-O \end{matrix} \end{array} 136
\begin{array}{r c} \begin{matrix} H-S \end{matrix} \end{array} 132 \begin{array}{r c} \begin{matrix} C=N \end{matrix} \end{array} 128 \begin{array}{r c} \begin{matrix} N=O \end{matrix} \end{array} 120
\begin{array}{r c} \begin{matrix} H-F \end{matrix} \end{array} 91.7 \begin{array}{r c} \begin{matrix} C \equiv N \end{matrix} \end{array} 116 \begin{array}{r c} \begin{matrix} O-O \end{matrix} \end{array} 145
\begin{array}{r c} \begin{matrix} H-Cl \end{matrix} \end{array} 127.4 \begin{array}{r c} \begin{matrix} C-O \end{matrix} \end{array} 143 \begin{array}{r c} \begin{matrix} O=O \end{matrix} \end{array} 121
\begin{array}{r c} \begin{matrix} H-Br \end{matrix} \end{array} 141.4 \begin{array}{r c} \begin{matrix} C=O \end{matrix} \end{array} 120 \begin{array}{r c} \begin{matrix} F-F \end{matrix} \end{array} 143
\begin{array}{r c} \begin{matrix} H-I \end{matrix} \end{array} 160.9 \begin{array}{r c} \begin{matrix} C-Cl \end{matrix} \end{array} 178 \begin{array}{r c} \begin{matrix} Cl-Cl \end{matrix} \end{array} 199
\begin{array}{r c} \begin{matrix} Br-Br \end{matrix} \end{array} 228
\begin{array}{r c} \begin{matrix} I-I \end{matrix} \end{array} 266

_{}^{a}\textrm{Most} values (\begin{matrix} C-H \end{matrix}, \begin{matrix} N-H \end{matrix}, \begin{matrix} C-H \end{matrix} and so on) are averaged over a number of species containing the indicated bond and may vary by a few picometers. Where a diatomic molecule exists, the value given is the actual bond length in that molecule (H_2 , N_2 , HF, and so on) and is known more precisely.

(b) There is no bromine-to-chlorine bond length in Table 10.2, so we need to calculate an approximate bond length using the relationship between bond length and covalent radii. BrCl contains a \begin{matrix} Br-Cl \end{matrix} single bond [imagine substituting one Br atom for one Cl atom in structure (10.4)]. The length of the \begin{matrix} Br-Cl \end{matrix} bond is one-half the \begin{matrix} Cl-Cl \end{matrix} bond length plus one-half the \begin{matrix} Br-Br \end{matrix} bond length: \left(\frac{1}{2} \times 199  pm \right) + \left(\frac{1}{2} \times 228  pm \right) = 214 pm. (The measured bond length is 213.8 pm.)

Assess
The data in Table 10.2 can be used to make estimates of bond lengths in a variety of molecules.

Related Answered Questions