Question 19.8: Calculating the Voltage of a Galvanic Cell under Standard-St...

Calculating the Voltage of a Galvanic Cell under Standard-State Conditions
What is the voltage of the galvanic cell shown in the illustration? What is the anode half-reaction, and what is the cathode half-reaction? Which direction do the electrons flow?

STRATEGY
In a galvanic cell, there must be a reduction half-reaction and an oxidation half reaction whose values of E° sum to give a positive value of E° for the cell. Any spontaneous redox reaction must have a positive value of E°. Use Table 19.1 to look up the values of E° for half-reactions and then determine which half-reaction is the reduction and which is the oxidation.

TABLE 19.1 Standard Reduction Potentials at 25 °C
Reduction Half-Reaction E° (V)
 

F_{2}(g) + 2 e^{-}  →2F^{-}(aq) 2.87  

H_{2}O_{2}(aq) + 2 H^{+}(aq) + 2 e^{-} → 2H_{2}O(l) 1.78
MnO^{-}_{4}(aq) + 8 H^{+}(aq) + 5 e^{-}→ Mn^{2+}(aq) + 4 H_{2}O(l) 1.51
Cl_{2}(g) + 2 e^{-} → 2Cl^{-}(aq) 1.36
Cr_{2}O^{2-}_{7}(aq) + 14 H^{+}(aq) + 6 e^{-} → 2 Cr^{3+}(aq) + 7 H_{2}O(l) 1.36
O_{2}(g) + 4 H^{+}(aq) + 4 e^{-} → 2 H_{2}O(l) 1.23
Br_{2}(aq) + 2 e^{-} → 2 Br^{-}(aq) 1.09
Ag^{+}(aq) + e^{-} → Ag(s) 0.80
Fe^{3+}(aq) + e^{-} → Fe^{2+}(aq) 0.77
O_{2}(g) + 2 H^{+}(aq) + 2 e^{-} → H_{2}O_{2}(aq) 0.70
I_{2}(s) + 2 e^{-} → 2 I^{-}(aq) 0.54
O_{2}(g) + 2 H_{2}O(l) + 4 e^{-} → 4 OH^{-}(aq) 0.40
Cu^{2+}(aq) + 2 e^{-} → Cu(s) 0.34
Sn^{4+}(aq) + 2 e^{-} → Sn^{2+}(aq) 0.15
2 H^{+}(aq) + 2 e^{-} → H_{2}(g) 0
Pb^{2+}(aq) + 2 e^{-} → Pb(s) -0.13
Ni^{2+}(aq) + 2 e^{-} → Ni(s) -0.26
Cd^{2+}(aq) + 2 e^{-} → Cd(s) -0.40
Fe^{2+}(aq) + 2 e^{-} → Fe(s) -0.45
Zn^{2+}(aq) + 2 e^{-} → Zn(s) -0.76
2 H_{2}O(l) + 2 e^{-} → H_{2}(g) + 2 OH^{-}(aq) -0.83
Al^{3+}(aq) + 3 e^{-}  → Al(s) -1.66
Mg^{2+}(aq) + 2 e^{-} → Mg(s) -2.37
Na^{+}(aq) + e^{-} → Na(s) -2.71
Li^{+}(aq) + e^{-} → Li(s) -3.04
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Table 19.1 gives the standard reduction potentials for the two half-reactions we must consider.

Cd^{2+}(aq) + 2 e^{-} → Cd(s)              E° = -0.40 V
Ag^{+}(aq) + e^{-} → Ag(s)                    E° = +0.80 V

One reaction must be reversed to an oxidation because any redox reaction must have one reduction half-reaction and one oxidation half-reaction. The value of E° for the galvanic cell must be positive; therefore, the oxidation half-reaction is the oxidation of Cd(s)   to   Cd^{2+}(aq).

\begin{array}{rc} \begin{matrix} \text{Anode  (oxidation):}    Cd(s) → Cd^{2+}(aq) + 2 e^{-} \\ \text{Cathode  (reduction): }   2 × [Ag^{+}(aq) + e^{-} → Ag(s)] \end{matrix} & \begin{matrix} E° = + 0.40 V \\ E° = + 0.80 V\\ \end{matrix} \\ \hline \begin{matrix} \text{Overall  cell  reaction:}    2 Ag^{+}(aq) + Cd(s) → 2 Ag(s) + Cd^{2+}(aq) \\ \end{matrix} & \begin{matrix} E° = + 1.20 V \\ \end{matrix}\end{array}

Note that the sign of E° was changed when the cadmium half-reaction was changed from a reduction (-0.40 V) to an oxidation (+0.40 V). Also, when the reduction half-reaction for silver was multiplied by the 2, the value of E° did not change. The value of E° for the overall cell reaction is the sum of E° values for the oxidation and reduction half-reactions, 0.80 V + 0.40 V = + 1.20 V. Electrons flow from the cadmium half-cell to the silver half-cell where Ag^{+}(aq) is reduced to Ag(s).

Related Answered Questions