Holooly Plus Logo

Question 9.5: A 3000 MW(t) pressurized water reactor has the following spe......

A 3000 MW(t) pressurized water reactor has the following specifications:; core thermal resistance 0.45 °C/MW(t), coolant flow, 68 × 10^6  kg/hr; coolant specific heat 6.4 × 10³ J/kg °C . The fuel temperature coefficient is

\frac{1}{k} \frac{∂k}{∂\overline {T_ƒ}} = -\frac{7.2 \cdot 10^{-4}}{\sqrt{273 + \overline {T_ƒ} }} \ \ (°C)^{-1}

and the coolant temperature coefficient by

\frac{1}{k}\frac{∂k}{∂\overline{T}_{c}}=\Bigl(30+1.5\overline{{{T}}}_{c}-0.010\overline{{{T}}}_{c}^{2}\Bigr)\cdot10^{-6}\quad({}^{o}C)^{-1}

a. Over what temperature range is the core overmoderated?
b. What is the value of the temperature defect? Assume room temperature of 35 °C and an operating coolant inlet temperature of 290 °C.
c. What is the value of the power defect?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Part a: As we learned in chapter 4 a liquid cooled and moderated reactor’s temperature coefficient is positive if it is overmoderated. This is based on the isothermal temperature coefficient. Thus for this problem

\alpha_{T}=\alpha_{f}+\alpha_{m}=-\frac{7.2\cdot10^{-4}}{\sqrt{273+T}}+\left(30+1.5T-0.010T^{2}\right)\cdot10^{-6}

Determining the temperature at which this coefficient vanishes analytically, involves solving a quadric equation. Instead we simply plot the coefficient.

Part b. We apply Eq. (9.34) to \alpha _T

D_{T}=\left\{-\int_{35}^{290}~\frac{720}{\sqrt{273+T}}\,d T+\int_{35}^{290}~\left(30+1.5T-0.010T^{2}\right)d T\right\}.10^{-6}

taking x = \sqrt{273 + T} and hence dT = 2xdx in the first integral then gives

D_{T}=\left\{-720\cdot2\int_{\sqrt{308}}^{\sqrt{563}}\;d x+\int_{35}^{290}\;\left(30+1.5T-0.010T^{2}\right)d T\right\}.10^{-6}

D_{T}=\left\{-720\cdot2\,x\bigg |_{17.5}^{23.7}+\left.\left(30T+{\frac{1.5}{2}}T^{2}-{\frac{0.010}{3}}T^{3}\right)\right|_{35}^{290}\right\}.10^{-6}

D_{T}=\left\{-89.28+7650+62156-81215\right\}\cdot10^{-6}=-11.5\cdot10^{-3}

Part c. The power defect is determined by substituting the temperature dependent coefficients into Eq. (9.35)

D_{P}=\int_{{T}_{i}}^{\overline{T}_{f}(P)}\,\alpha_{f}d\overline{{{T}}}_{f}+\int_{{T}_{i}}^{\overline{T}_{c}(P)}\,\alpha_{c}d\overline{{{T}}}_{c}

D_{P}=\left\{\int_{T_i} ^{\bar{T}_{f}(P)}\frac{720}{\displaystyle\sqrt{273+\overline{{{T}}}_{f}}}d\overline{{{T}}}_{f}+\displaystyle\int_{T_{i}}^{{\bar{T}_{c}(P)}}~\left(30+1.5\overline{{{T}}}_{c}-0.010\overline T_{c}^{2}\right)d\overline{{{T}}}_{c}\right\}.10^{-6}

where T_{i}=T_{i}=290\ {}^{\circ}{ C},\,\,R_{f}=0.45\ {}^{\circ}{ C}/\mathrm{MW}(t), W=68\times10^{6}\,\mathrm{kg}/\mathrm{hr}\, × 3600^{-1}\,\mathrm{hr}/\mathrm{s}= 18.9\times10^{3}\mathrm{kg /s} \ \ { c}_{p}\,=6.4  ×  10^{3}~\mathrm{J/kg} \ \ ^{\circ }C . Thus

\overline{{{T}}}_{c}=\frac{1}{2W c_{p}}P+T_{i}

={\frac{1}{2\cdot18.8\cdot10^{3}\cdot6.4\cdot10^{3}\cdot10^{-6}}}\,3000+290=302.5 \ \ ^{\circ} C

\overline{{{T}}}_{f}=R_{f}P+\overline{{{T}}}_{c}=0.45 \cdot 3000+302.5=1,652.5\ ^{\circ}C

Thus

D_{P}=\left\{-\int_{290}^{1652}\frac{720}{\sqrt{273+\overline{{{T}}}_{f}}}d\overline{{{T}}}_{f}+\int_{290}^{302.5}\;\left(30+1.5\overline{{{T_{c}}}}-0.010 \overline{T}_c^2\right)d\overline{{{T}}}_{c}\right\}.10^{-6}

Evaluating the integrals:

D_{P}=\left\{-720\cdot2\,x |_{23.7}^{{43.9}}+\left(30T+\frac{1.5}{2}T^2-\frac{0.010}{3}T^{3}\right)\Bigg|_{290}^{302.5}\right\}\cdot 10^{-6}

D_{P}=\left\{-29,088+377+5,555-10,972\right\}\cdot10^{-6}=-34.1\cdot10^{-3}

Related Answered Questions

Question: 9.13

Verified Answer:

The reactor undergoes a loss of flow transient wit...
Question: 9.12

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.11

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.10

Verified Answer:

β1 := 0.00021          \operatorname{c1}:=\...
Question: 9.9

Verified Answer:

a. For negative temperature coefficients, we begin...
Question: 9.8

Verified Answer:

Part a. See solution to problem [8.14] for transie...
Question: 9.7

Verified Answer:

For the simple model of problem [9.4] the reactivi...
Question: 9.6

Verified Answer:

Part A For a bare cylindrical reactor , from Eq. (...
Question: 9.4

Verified Answer:

Part a: Take the average coolant temperature from ...
Question: 9.3

Verified Answer:

Part a: From Eq. (9.29) the isothermal temperature...