Holooly Plus Logo

Question 9.17: (a) Find the inverse of the matrix D = ( 1 0 -2 2 2 3 1 3 2)......

(a) Find the inverse of the matrix

D = \left(\begin{matrix} 1 & 0 & -2 \\ 2 & 2 & 3 \\ 1 & 3 & 2 \end{matrix}  \right)

by Gauss–Jordan elimination.

(b) Show that DD^{–1} = I.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Write out the augmented matrix consisting of the matrix D and the unit matrix of the same dimension:

\left(\begin{array}{ccc|ccc} 1 & 0 & -2&1 & 0 & 0 \\ 2 & 2 & 3& 0 & 1 & 0 \\ 1 & 3 & 2& 0 & 0 & 1 \end{array} \right)

Carry out Gauss–Jordan elimination on the matrix D by the method given in Worked Example 9.9.

The original matrix, D, is now reduced to the unit matrix. The inverse of D is given by the transformed unit matrix: the 4th, 5th and 6th columns of the augmented matrix.

D^{-1} = \left(\begin{matrix} \frac {5}{13} & \frac {6}{13} & -\frac {4}{13} \\ \frac {1}{13} & -\frac {4}{13} & \frac {7}{13} \\ – \frac {4}{13} & \frac {3}{13} & -\frac {2}{13}\end{matrix} \right) = \frac {1}{13} \left(\begin{matrix} 5 & 6 & -4 \\ 1 & -4 & 7 \\ -4 & 3 & -2 \end{matrix} \right)

Note: If division by zero arises at any stage, then D does not have an inverse.

(b) Every element in D^{−1} is multiplied by 1/13. Before multiplying D^{−1} by D, factor out this scalar to simplify the arithmetic involved

DD^{−1} = \left(\begin{matrix} 1 & 0 & -2 \\ 2 & 2 & 3 \\ 1 & 3 & 2 \end{matrix} \right) \frac {1}{13} \left(\begin{matrix} 5 & 6 & -4 \\ 1 & -4 & 7 \\ -4 & 3 & -2 \end{matrix} \right) = \frac {1}{13} \left(\begin{matrix} 13 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{matrix} \right) = \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right)
Action Augmented matrix Calculations
\left(\begin{array}{ccc|ccc} 1 & 0 & -2& 1 & 0 & 0 \\ 2 & 2 & 3 &0 & 1 & 0\\ 1 & 3 & 2&0 & 0 & 1 \end{array} \right)\begin{matrix} (1) \\ (2) \\ (3) \end{matrix}
row 2 + (–2 × row 1)
row 3 + (–1 × row 1)
\left(\begin{array}{ccc|ccc} 1 & 0 & -2& 1 & 0 & 0 \\ 0 & 2 & 7 &-2 & 1 & 0 \\ 0 & 3 & 4&-1 & 0 & 1 \end{array} \right)\begin{matrix} (1) \\ (2)¹ \\ (3)¹ \end{matrix} Calculate (–2 × row 1)
→(–2   0   4   –2   0   0)
Calculate (–1 × row 1)
→(–1   0   2   –1   0   0)
row 2¹ × \frac {1}{2} \left(\begin{array}{ccc|ccc} 1 & 0 & -2&1 & 0 & 0 \\ 0 & 1 & \frac {7}{2}&-1 & \frac {1}{2} & 0 \\ 0 & 3 & 4& 0 & 0 & 1 \end{array}\right)\begin{matrix} (1) \\ (2)² \\ (3)¹ \end{matrix}
row 3¹ + (–1 × row 2²) \left(\begin{array}{ccc|ccc} 1 & 0 & -2&1 & 0 & 0 \\ 0 & 1 & \frac {7}{2}&-1 & \frac {1}{2} & 0 \\ 0 & 0 & -\frac {13}{2}&2 & -\frac {3}{2} & 1 \end{array} \right)\begin{matrix} (1) \\ (2)² \\ (3)² \end{matrix} Calculate (–3 × row 2²)
→(0  -3  –\frac {21}{2}  3  –\frac {3}{2}   0)
row 3² × \frac {2}{13} \left(\begin{array}{ccc|ccc} 1 & 0 & -2& 1 & 0 & 0 \\ 0 & 1 & \frac {7}{2}&\ -1 & \frac {1}{2} & 0 \\ 0 & 0 & 1 &-\frac {4}{13} & \frac {3}{13} & -\frac {2}{13}\end{array}\right)\begin{matrix} (1) \\ (2)² \\ (3)³ \end{matrix}
row 1 + (2 × row 3³)
row 2² + (−\frac {7}{2} × row 3³)
\left(\begin{array}{ccc|ccc} 1 & 0 & 0&\frac {5}{13} & \frac {6}{13} & -\frac {4}{13} \\ 0 & 1 & 0 &\frac {1}{13} & -\frac {4}{13} & \frac {7}{13} \\ 0 & 0 & 1&- \frac {4}{13} & \frac {3}{13} & -\frac {2}{13}  \end{array} \right)\begin{matrix} (1)¹ \\ (2)² \\ (3)³ \end{matrix} Calculate (–2 × row 3³)
→(0  0  2   -\frac {8}{13}    \frac {6}{13}    -\frac {4}{13})

Calculate (-\frac {7}{2} × row 3³) →(0   0    -\frac {7}{2}      \frac {14}{13}      \frac {10.5}{13}      \frac {7}{13})

 

Related Answered Questions

Question: 9.7

Verified Answer:

All three equations must be written in the same fo...
Question: 9.20

Verified Answer:

Step 1: Use the underlying assumption total input=...
Question: 9.18

Verified Answer:

(a) Use the definition of the inverse given in equ...
Question: 9.9

Verified Answer:

Rearrange the equations to have variables on the L...
Question: 9.8

Verified Answer:

The equations are already written in the required ...
Question: 9.19

Verified Answer:

Step 1: Write all the equations in the same order:...