Holooly Plus Logo

Question 9.20: Given the input/output table for the three-sector economy:...

Given the input/output table for the three-sector economy:

If the final demands from each sector are changed to 500 from agriculture, 550 from industry, 300 from financial services, calculate the total output from each sector.

Input to
Agric. Industry Services Other demands Total output
Output from Agric. → 150 225 125 100 600
Industry → 210 250 140 300 900
Services → 170 0 30 100 300
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1: Use the underlying assumption total input=total output to complete the input/output table

Step 2: Calculate the matrix of technical coefficients, A, by dividing each column of inputs by total input.

Step 3: Get the inverse of the matrix (I − A), since this inverse matrix is required in the equation X = (I – A)^{–1} d:

(I − A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}  – \left\lgroup\begin{matrix} \frac{150}{600} & \frac{225}{900} & \frac{125}{300} \\ \frac{210}{600} & \frac{250}{900} & \frac{140}{300} \\ \frac{170}{600} & \frac{0}{900} & \frac{30}{300} \end{matrix} \right\rgroup  = \begin{pmatrix} 0.75 & −0.25 & −0.42 \\ −0.35 & 0.72 & −0.47 \\ −0.28 & 0.00 & 0.90 \end{pmatrix}

To calculate the inverse of (I –A), (i) use the elimination method, (ii) use the cofactor method. Set out the table of cofactors:

The inverse of (I – A) = C^T/|I – A|

= \frac{1}{0.289 678} \left(\begin{matrix} 0.648 & 0.4466 & 0.2016 \\ 0.225 & 0.5574 & 0.070 \\ 0.4199 & 0.4995 & 0.4525 \end{matrix} \right)^T

= \frac{1}{0.289 678} \left(\begin{matrix} 0.648 & 0.255 & 0.4199 \\ 0.4466 & 0.5574 & 0.4995 \\ 0.2016 & 0.070 & 0.4525 \end{matrix} \right)

Step 4: Finally, state the column of new external demands, d, and solve for X, by equation (9.34):

X = (I − A)^{−1} d

\left(\begin{matrix} T_{agri.} \\ T_{ind.}\\ T_{serv.} \end{matrix} \right) = \frac{1}{0.289 678} \left(\begin{matrix} 0.648 & 0.255 & 0.4199 \\ 0.4466 & 0.5574 & 0.4995 \\ 0.2016 & 0.070 & 0.4525 \end{matrix} \right) \left(\begin{matrix} 500 \\ 550\\ 300 \end{matrix} \right) = \left(\begin{matrix} 1980.5 \\ 2346.5\\ 949.5 \end{matrix} \right)
Input to
Agric. Industry Services Other demands Total output
Output from Agric.→ 150 225 125 100 600
Industry→ 210 250 140 300 900
Services→ 170 0 30 100 300
Other inputs 70 425 5
Total input 600 900 300

 

Input to
Agric. Industry Services Other demands Total output
Output from Agric.→ 150/600 225/900 125/300 100 600
Industry→ 210/600 250/900 140/300 300 900
Services→ 170/600 0/900 30/300 100 300
Total input 600/600 900/900 300/300
t1
t2

Related Answered Questions

Question: 9.7

Verified Answer:

All three equations must be written in the same fo...
Question: 9.18

Verified Answer:

(a) Use the definition of the inverse given in equ...
Question: 9.17

Verified Answer:

(a) Write out the augmented matrix consisting of t...
Question: 9.9

Verified Answer:

Rearrange the equations to have variables on the L...
Question: 9.8

Verified Answer:

The equations are already written in the required ...
Question: 9.19

Verified Answer:

Step 1: Write all the equations in the same order:...